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Abstract. Augmented reality (AR)-based information delivery has
been attracting an increasing attention in the past few years to improve
communication in human-robot teaming. In the long-term use of AR
systems for collaborative human-robot perception, one of the biggest
challenges is to perform place and scene matching under long-term envi-
ronmental changes, such as dramatic variations in lighting, weather and
vegetation across different times of the day, months, and seasons. To
address this challenge, we introduce a novel representation learning app-
roach that learns a scalable long-term representation model that can be
used for place and scene matching in various long-term conditions. Our
approach is formulated as a regularized optimization problem, which
selects the most representative scene templates in different scenarios to
construct a scalable representation of the same place that can exhibit sig-
nificant long-term environment changes. Our approach adaptively learns
to select a small subset of the templates to construct the representa-
tion model, based on a user-defined representativeness threshold, which
makes the learned model highly scalable to the long-term variations in
real-world applications. To solve the formulated optimization problem,
a new algorithmic solver is designed, which is theoretically guaranteed
to converge to the global optima. Experiments are conducted using two
large-scale benchmark datasets, which have demonstrated the superior
performance of our approach for long-term place and scene matching.
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1 Introduction

Augmented Reality (AR) has been attracting an increasing attention in industry
and academia, which provides a revolutionary technology to insert virtual objects
into the real world through the use of a head-mounted display or a hand-held
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mobile device [1,2]. In particular, by overlaying digital information on top of the
real scene, AR provides a promising solution to more intuitively and interactively
deliver information to humans, which can be applied to improve communications
between robots and humans in the critical application of human-robot teaming.
For example, such information may include restaurant ratings and descriptions of
a building in a city’s downtown area, or a tagged damage for further inspection or
repair in indoor or underground infrastructure (e.g., power plant boilers, subway
tunnels, and pipeline networks), collected by mobile robots and labeled by other
teammates. To tether the robot-collected information correctly and stably to
reality, the AR system, as a component of communication in human-robot teams,
must either estimate the location and orientation of the user, or match the real
scene with a database that includes information of the same scene from previous
visits. Place and scene matching is especially essential, when human-robot teams
work in GPS-denied (e.g., underground infrastructure) and GPS-limited (e.g., a
downtown area with tall buildings) areas. With accurate matches of the current
scene with previous scenes in the database, labels associated with previous scenes
can be displayed over the current scene (Fig. 1).

Scenes and labels collected by robots Currently observed scene 

Gi  Store
Hotel Golden City Sign

Fig. 1. A motivating example of long-term place and scene matching for long-term AR-
based information delivery in collaborative human-robot perception applications. Due
to long-term environment changes such as weather, lighting, and vegetation variations,
the current scene observed by a camera of AR systems may look significantly different
from stored scenes of the same place collected previously by robots.

One biggest challenge of matching a currently observed scene and place with
previous scenes is to address long-term changes of the environment during long-
term use of an AR system. Occlusion and viewpoint differences are typical prob-
lems in conventional scene matching problems. Besides those, the long-term scene
and place matching problem is even more challenging since the AR system needs
to operate in various scenarios. The appearance of the same place can drastically
change in different times of the day, months and seasons. Many factors can cause
the appearance changes, for example, lightening changes, weather changes, and
vegetation condition changes. In addition, multiple places could have a similar
appearance (e.g., two chain stores in Colorado and California may look similarly),
which is usually called perceptual aliasing. It is another challenge that makes
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the long-term scene and place matching problem hard for AR-based information
delivery in collaborative human-robot perception applications.

Due to its importance, several approaches on the long-term scene and place
matching were investigated, mainly by researchers from robotics and computer
vision communities [3–5], for example, to perform camera localization and loop
closure detection for simultaneous localization and mapping (SLAM) [6–9]. Many
previous techniques formulate long-term scene and place matching into an image-
vs-image matching problem using either local features or global features. Typical
local features used in long-term scene matching include SIFT [10], SURF [11],
ORB [12], while HOG [13], GIST [14], and CNN [15] are widely used global
features. However, scene and place matchings based upon single images cannot
address perceptual aliasing well. As an improved paradigm, sequence-vs-sequence
matching was demonstrated to have better performance to address perceptual
aliasing, by introducing additional temporal and spatial information of scenes
and places [16,17]. However, image-vs-image and sequence-vs-sequence match-
ings cannot incorporate the rich information recorded from different scenarios.
The methods only compare the currently query scene with one and only one
existing template acquired from a specific scenario in the database.

In this paper, we propose a novel approach of learning a scalable long-term
representation model that adaptively integrates information extracted from mul-
tiple environmental conditions to improve encoding power of long-term percep-
tual variations in order to enable scene matching for long-term use of AR sys-
tems. Given its advantage, we refer to the approach as Learning Of Representa-
tion with Scalability (LORS). Formulated as a regularized optimization problem,
LORS learns the representativeness of multiple scene templates (instead of only
one template as in conventional methods) recorded in multiple scenarios of the
each place. Then LORS adaptively selects the most representative subset of
templates to build the representation model for that place, which incorporates
representative place information in different scenarios, as shown in Fig. 2. Since
LORS is capable of selecting a small subset of the most representative tem-
plates, it scales well to large-scale real-world AR applications when identifying a
big number of places from observations collected from a big number of long-term
scenarios.

The contributions of this research are twofold:

– We propose the novel LORS approach to learn a representation model that
adaptively integrates a set of sequence templates extracted under multiple
environmental scenarios, which provides a comprehensive representation of
long-term perceptual variations for more robust place and scene in long-term
use of AR systems. The existing scene matching methods based upon single
images and sequences are special cases of the proposed LORS method.

– We introduce a novel formulation to construct the representation model under
the general regularized optimization framework, in order to select only a small
number of most representative templates, which makes it applicable to large-
scale long-term AR-based information delivery in collaborative human-robot
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perception applications. A new optimization solver is also implemented to
address the formulated problem with a convergence guarantee.

The remainder of the paper is organized as follows. In Sect. 2, we discuss our
LORS approach in detail. In Sect. 3, experimental results are presented. Finally,
we conclude our paper in Sect. 4.

(a) Image-based matching
Template image Query image

(b) Sequence-based matching
Template sequence Query sequence

(c) Model-based matching by our LORS method
Template model Query sequence

Fig. 2. Overview of the proposed LORS approach to learn an representation model for
each place that integrates multiple sequence scene templates extracted in various envi-
ronmental conditions for long-term AR-based information delivery. Our representation
model is constructed by adaptively selecting a small number of the most representative
sequence templates. LORS is more general and representative than the previous image-
based (Fig. (a)) and sequence-based (Fig. (b)) matching techniques that only use one
and only one template to match with the query observation. In addition, LORS is scal-
able in real-world long-term autonomy applications due to its adaptive, representative
sequence selection capability.

2 LORS for Long-Term Scene and Place Matching

In this section, we introduce our novel LORS approach to learn the represen-
tation model for each place, which is adaptively constructed by representative
templates recorded in different scenarios in a long period of time. We formulate
the problem into a novel optimization problem with structured sparsity regular-
ization. In addition, we also developed a new optimization algorithm to solve the
formulated non-smooth optimization problem, with the theoretical convergence
guarantee.

Notations in this paper follow the following standards: Vectors are denoted as
boldface lowercase letters, while matrices use boldface capital letters. For a given
matrix M = {mij} ∈ R

n×m, its i-th row and j-th column are referred as mi and
mj , respectively. The �1-norm of a vector v ∈ R

n is defined as ‖v‖1 =
∑n

i=1 |vi|,
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and the �2-norm of v is defined as ‖v‖2 =
√

v�v. The �2,1-norm of the matrix

M is defined as: ‖M‖2,1 =
∑n

i=1

√∑m
j=1 m2

ij =
∑n

i=1 ‖mi‖2, and the Frobenius

norm is defined as ‖M‖F =
√∑m

i=1

∑n
j=1 m2

ij .

2.1 Problem Formulation

To solve the critical long-term place and scene matching problem, a sequence of
frames are collected to represent the place in different scenarios (e.g., different
times of the day, months, or seasons). For a specific place p, the feature vectors
extracted from the sequential frames in different scenarios are represented as

X(p) = [x1(p), · · · ,xs(p)] ∈ R
d×s, where xi(p) =

[
(x1

i (p))�, · · · , (xf
i (p))�

]�
∈

R
d×1 is a concatenated feature vector of f images in scenario i, and the feature

length for each image xj
i (p), j = 1, · · · , f is dj satisfying d =

∑f
j=1 dj . s denotes

the number of scenarios in the long-term span.
Though sequences of the same place in different s scenarios are recorded for

the representation, it is obvious that not all of them are unique and represen-
tative. For example, the sequences captured when passing through a tunnel in
summer and winter can be largely identical, though it is not true for those on
open roads. We are interested in seeking representative sequences that can repre-
sent the place in various scenarios in a long period. According to the formulation
above, we are trying to select r(r ≤ s) template sequences that are most repre-
sentative in long-term for each place p, respectively, which can be formulated to
solve:

min
W(p)

‖X(p)W(p) − X(p)‖2F + λ‖W(p)‖2,1, p = 1, · · · , c (1)

where W(p) = [w1(p), · · · ,ws(p)] ∈ R
s×s, and wi(p) is the weight of the

sequence template candidates to represent the i-th candidate (i-th column)
in X(p). The �2,1-norm based regularization enforces the sparsity among all
sequence template candidates, which means only part of representative sequences
are selected to represent all other sequences. c is the total number of places to
be distinguished. There is a specific weight matrix W(p) for place p. For sim-
plicity, we omit p in X(p) and W(p) as X and W in the following presentation,
respectively.

After solving Eq. (1), the rows wi, i = 1, · · · , s are sorted by the value of
‖wi‖1 in decreasing order, and the resulted row-sorted matrix W′ is obtained.
Then, our LORS model enables to adaptively select the most representative
sequence templates. This encodes our insight that the number of templates in
the model should vary according to the degree of the appearance variation of
a specific place. For example, a place inside a tunnel requires fewer sequence
templates as the appearance does not show significant long-term variations (e.g.,
it is not affected by snow or sunshine); on the other hand, places on the road in
an open area require more templates to represent long-term changes in different
times of a day and seasons. Given W′, our model determines the minimum value
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of r that satisfies 1
s

∑r
i=1 ‖w′i‖1 ≥ γ. Then, the r sequence template candidates

(columns of X) are selected corresponding to the top r rows of W′, where γ
is a threshold encoding the expected overall representativeness of the selected
sequence template candidates, called the representativeness threshold. By this
mechanism, not all captured sequences will be treated as the sequence templates,
which makes our model highly scalable in real-world applications while still keeps
the representativeness among different places and the robustness under different
environmental conditions.

Intuitively, when there are no appearance changes during the long-term nav-
igation period, only one sequence template candidate will obtain a high row-sum
value (Others have a value close to 0 due to the sparsity effect by the �2,1-norm
regularization), which will be selected as the single template for this place. On
the other hand, when the place experiences significant appearance variations, no
single sequence template candidate can well represent others. In this case, the
rows of W will become much less sparse and a set of sequence templates can
have a high row-sum value, resulting in multiple sequence templates in the top
rows of W′ to be selected as templates. Therefore, the proposed LORS model
is able to adaptively select a varying number of sequence template candidates
based on their different appearance variation degree. Since LORS only requires
a subset of templates instead of all, it is highly storage efficient in real-world
applications.

Our LORS model is different from the traditional Bag of Words (BoWs)
technique. Firstly, the sequence-based representation is applied in our model,
which incorporates temporal information while BoWs approaches discard it.
Sequence-based scene and place matching has be demonstrated to have better
performance than image-based methods [16,18,19]; Secondly, our LORS model
enables to select the top representative sequence templates, while BoWs cannot.
The LORS mechanism scales well when places are recorded in various scenarios.

2.2 Long-Term Scene and Place Matching

The optimal weight matrix W∗ =
[
(w1)∗; · · · ; (ws)∗] ∈ R

s×s can be obtained
after solving the optimization problem in Eq. (1) using Algorithm 1, which is
detailed in Sect. 2.3. Then, the representative sequence templates X∗ ∈ R

d×r

for place p are selected according to the corresponding top r rows satisfying
1
s

∑r
i=1 ‖wi‖1 ≥ γ.

For long-term scena and place matching in the testing phase, we are given a
new query sequence represented by the feature xq ∈ R

d×1. We then calculate the
matching score scorep,i, p = 1, · · · , c, i = 1, · · · , r between the query observation
sequence and each sequence template i for each place p by feature similarity.
Then, the query place q can be identified as

q = argmax
p

scorep,i (2)
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Algorithm 1. An iterative algorithm to solve the sparse optimization prob-
lem in Eq. (1).
Input : Sequence-based features w.r.t. observations in different scenarios

X ∈ R
d×s

Output: The weight matrix W ∈ R
s×s

1: Let t = 1, and initialize W(t) ∈ R
s×s = argminW ‖XW − X‖2

F ;
2: while not converge do
3: Calculate the diagonal matrix D(t + 1) with the i-th diagonal element as

1
2‖wi(t)‖2

, where wi(t) is the i-th row of W(t);

4: For each wi (1 ≤ i ≤ s), calculate wi(t + 1) =
(
X�X + λD(t + 1)

)−1
X�xi;

5: t = t + 1.

6: end
7: return W ∈ R

s×s.

2.3 Optimization Algorithm

The optimization problem in Eq. (1) is convex and can be reformulated and
solved as a second-order cone programming (SOCP) or semidefinite program-
ming (SDP) problem. However, solving SOCP or SDP is computationally expen-
sive in general. In this section, we propose an algorithm to solve the formulated
optimization in Eq. (1) efficiently with theoretical convergence guarantee.

Taking the derivative of Eq. (1) for each place p with respect to each column
of W and setting it to 0, we have

X�Xwi − X�xi + λDwi = 0, (3)

where D is a diagonal matrix with the i-th diagonal element as 1
2‖wi‖2

, i =
1, · · · , s.

Therefore, wi can be calculated by

wi =
(
X�X + λD

)−1
X�xi. (4)

It is observed that the matrix D in Eq. (4) depends on the weight matrix
W, which is also unknown. In order to solve this problem, an iterative solver is
presented in Algorithm 1. Algorithm 1 can be proved to guarantee the theoretical
convergence to the global optima.

3 Experiments

To evaluate the performance of our LORS approach, we conducted experiments
on two public benchmark datasets: CMU-VL dataset and Nordland dataset. Our
prior work [5] has shown that HOG descriptors can achieve significant perfor-
mance in comparison to other descriptors (e.g. color, CNN, GIST, etc.) in these
two datasets for long-term scene and place matching. Thus, we select the HOG
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descriptor for every single frame in both experiments. It aims to ensure that the
performance increase results from the proposed LORS approach instead of raw
feature engineering. Though the HOG descriptor is selected in our experiments,
any descriptor can be used in our LORS approach. In addition, multimodal rep-
resentations by combining multiple descriptors also work in our LORS approach.

3.1 Results over Different Months

The CMU Visual Localization (CMU-VL) dataset [20] is a public benchmark
dataset that recorded a 8.8 Km route under a variety of scenarios across dif-
ferent months throughout the entire year. It was recorded by a car with two
cameras mounted on the roof of the it and oriented to left and right respectively.
GPS data were also measured and recorded to be used as the ground truth of
the recorded places. The environmental conditions in the CMU-VL dataset vary
a lot across different months of the year (e.g. sunny, snowy, partial cloudy, with
green vegetation or reduced colored vegetation, etc.), which makes it very chal-
lenging to recognize the same place in such a long period of time. Since multiple
recordings of the same route are used to evaluate the proposed LORS method,
we have to align them strictly before the experiments. We use the GPS informa-
tion w.r.t. each frame of different recorded videos to find the same place under
different scenarios.

Scenario 2 Scenario 3 Scenario 4 Scenario 5Scenario 1

Place 1

Place 2

Place 3

Fig. 3. Three example places and their scenes in five different scenarios in the experi-
ment using the CMU-VL dataset.

The scenarios considered in the experiment via the CMU-VL dataset include:

1. Mid September: sunny with abundant green vegetation and vertical shadows
2. Early November: sunny with reduced colored vegetation and fallen leaves
3. Late November: sunny with strong slanted shadows
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4. Late December: cloudy with lots of snow on ground
5. Early March: partially cloudy with some shadows

which is also illustrated in Fig. 3. The five videos recorded in these five scenarios
respectively are used to train the LORS model. Without loss of generality, a new
video recorded in the same first scenario (Mid September) is used as the testing
data to evaluate the performance of our proposed LORS method.

The representative templates of each place are obtained during the train-
ing phase using the proposed LORS method. After that, the new unseen query
observations recorded in Scenario #1 is used to assess the performance. The qual-
itative evaluation is illustrated in Fig. 4(a), where Fig. 4(a) shows all templates
recorded in five different scenarios as illustrated in Fig. 3. Instead of applying
all five templates in the testing phase, three representative ones (Scenario #1,
3, and 4, shown in Fig. 4(b)) are identified by our LORS method and are used
to represent the place. In the testing phase, the same place has been success-
fully recognized as shown in Fig. 4(b). The representativeness of each template
is quantified in Fig. 4(c), where we can see the templates in Scenario #1, 3 and
4 are three top representative ones for the place when the threshold γ = 40%.

We also quantitatively evaluate our LORS method in Fig. 5, where Fig. 5(a)
and (b) show the precision-recall curves with respect to different number of
templates for place representation and different representativeness threshold in

Scenario 2 Scenario 3 Scenario 4 Scenario 5Scenario 1
(a) All templates recorded in 5 different scenarios
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(c) Template representativeness

Fig. 4. Qualitative evaluation of our LORS approach over the CMU-VL dataset across
different months.
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the LORS method, respectively. From Fig. 5(a) we observe that the best perfor-
mance is achieved when all 5 templates are used for the place representation,
which provides the largest amount of information for each place. Figure 5(a) also
shows our LORS method almost has the same performance when the represen-
tativeness threshold γ = 20%. In addition, our LORS method outperforms other
cases when the single template is used for the place representation. Using the
single template recorded in Scenario #1 has much better performance than those
recorded in Scenario #2, 3, 4 and 5. That is because the query observations in
testing are also recorded in Scenario #1, which means it reduces to the ‘short-
term’ place matching problem in this case. On the other hand, the performance is
decreased significantly when the training and testing scenarios are inconsistent,
showing the poor robustness of the traditional single-scenario-based methods in
the long-term scene and place matching problem.

Figure 5(a) demonstrates that incorporating more place information (with
more templates) results in better place recognition performance. However, it
will require a lot of data storage and suffer from the processing speed. Our
LORS method enables to select most representative templates while does not
have too much performance decrease. Figure 5(b) and Table 1 further evaluate
the LORS performance with respect to different representativeness threshold.
Higher representativeness threshold γ indicates more templates (templates with
representativeness less than γ) will be discarded for the place representation.
From Fig. 5(b) and Table 1, it is observed that the performance (area size below
the precision-recall curves) decrease is significantly smaller than the percentage
of templates that are discarded, demonstrating the superior place representation
capability by our LORS method.

0 0.2 0.4 0.6 0.8 1
Recall
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LORS with  = 20%
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(a) Precision-recall curves computed us-
ing different training scenarios
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Fig. 5. Quantitative evaluation of our LORS approach on the CMU-VL dataset across
different months.
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Table 1. Performance decrease with respect to different degrees of information loss
(Representativeness threshold γ) over the CMU-VL and Nordland dataset.

Representativeness
threshold γ

Performance
decrease over
CMU-VL

Performance decrease
over Nordland

10% 0 0

20% 0.132% 0

30% 0.375% 0

40% 5.05% 2.05%

50% 12.5% 2.22%

60% 15.6% 3.29%

3.2 Results over Different Seasons

We also evaluate the performance of LORS via the Nordland dataset. Nordland
dataset [4] is another public benchmark dataset that records the scenes recorded
by a self-driving train in a ten-hour long trip traveling around 3000 km in Nord-
land. Visual data in four seasons were recorded and aligned strictly frame by
frame in the dataset. The video has a 1920 × 1080 resolution and 25 frames per
second (FPS).

There are significant appearance changes in the Nordland dataset, which
are caused by various weather, vegetation and illumination conditions in four
seasons. For example, there is almost full snow coverage on the ground in winter
while with green vegetation in summer. In addition, the journey passes through
many wild places with similar appearances, which means the dataset has strong
perceptual aliasing problem. All these difficulties make the Nordland one of
the most challenging dataset for long-term place and scene matching. In this
experiment, the videos are downsampled with 640 × 360 resolution and 5 FPS.

The previous experiment via the CMU-VL dataset demonstrates significant
performance of the proposed LORS approach when the testing scenario is the
same as the one of the training scenarios, that is, the testing environmental
condition is experienced in the training process. On the other hand, we are
also interested in the case when the testing scenario is never experienced during
training, since there are numerous combinations of environmental conditions in
real-world collaborative human-robot perception applications. In this experiment
over the Nordland dataset, the videos recorded in Summer, Autumn and Winter
are used in the representation model learning by our LORS method, which are
shown in Fig. 6, and the video recorded in Spring is used for testing, which is
never experienced before.

The representative templates of each place are obtained during the train-
ing phase using the proposed LORS method. After that, the new unseen query
observations recorded in Spring is used to assess the performance. The qualitative
evaluation is illustrated in Fig. 7, where Fig. 7(a) shows all seasonal templates
recorded in Summer, Autumn, and Winter. Instead of applying all three tem-
plates in the testing phase, two representative ones (Summer and Autumn shown
in Fig. 7(b)) are identified by our LORS method and are used to represent the
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Autumn WinterSummer

Place 1

Place 2

Place 3

Fig. 6. Three example places and their scenes in three different seasons in the experi-
ment over the Nordland dataset.

place. In the testing phase, the same place has been successfully recognized as
shown in Fig. 7(b) though the Spring scenario is never experienced in the train-
ing process. The representativeness of each template is quantified in Fig. 7(c),
where we can see templates in Summer and Autumn are two top representative
ones for the place when the threshold γ = 60%.

Similar to the experiment over the CMU-VL dataset, we also quantitatively
evaluate our LORS method via the Nordland dataset in Fig. 8, where Fig. 8(a)
and (b) show the precision-recall curves with respect to different number of tem-
plates for place representation and different representativeness threshold in the
LORS method, respectively. From Fig. 8(a) we observe that the best performance
is achieved when all 3 seasonal templates are used for the place representation,
which provides the largest amount of information for each place. Figure 8(a) also
shows our LORS method almost has the same performance when the represen-
tativeness threshold γ = 35%. In addition, our LORS method outperforms other
cases when the single template is used for the place representation, showing the
great benefits from multiple template adoption as well as representative tem-
plate learning even when the environmental condition in testing phase is never
experienced before. Different from the previous experiment over the CMU-VL
dataset, using the single template recorded in any single season cannot perform
well in the long-term scene and place matching (low precision and recall values
as shown in Fig. 8(a)). That is because the query observations in testing are
recorded in Spring, which is never experienced during training.

Figure 8(b) and Table 1 also evaluate the LORS performance with respect
to different representativeness threshold γ, from which it is observed that the
performance (area size below the precision-recall curves) decrease is significantly
smaller than the percentage of templates that are discarded, demonstrating the
superior place representation capability by our LORS method. We are able to
balance the long-term place matching performance and scalability degree for
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Summer Autumn Winter

(a) All templates recorded in three different seasons
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(c) Template representativeness

Fig. 7. Qualitative evaluation of our LORS approach over the Nordland dataset across
different seasons.

real-world AR-based information delivery in human-robot collaboration appli-
cations by the γ parameter of the proposed LORS method.

3.3 Discussion

The main parameters of the LORS approach are discussed and analyzed in this
subsection. Without loss of generality, the experimental results via the Nordland
dataset is selected to evaluate the effects of the parameter selection in our LORS
method, which are illustrated in Fig. 9. We have similar results over the CMU-VL
dataset.

The sequence length f is one of the most important parameter in our LORS
method. The precision-recall curves in Fig. 9(a) indicate that better long-term
place and scene matching accuracy can be achieved when the sequence length
f is increased. There is more comprehensive information contained in longer
sequences, especially in the Nordland dataset that has strong perceptual alias-
ing problems. When f = 1, the sequence-based place representation reduces to
the single image-based representation losing the temporal information, making
the performance even worse. Our LORS method is a model-vs-sequence scene
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Fig. 8. Quantitative evaluation of our LORS approach over the Nordland dataset across
different seasons.

matching method, which has been demonstrated to improve the place matching
accuracy in comparison to image-vs-image matching [16], as shown in Fig. 9(a).
However, longer sequences include more image frames, indicating the precision
of the represented place is low. For example, assuming the speed of the train
is 130 km/h, the localization precision when f = 1 is 7.2 m, while it is 36.0 m
when f = 5.

Besides the sequence length f , the LORS’s performance will also be affected
by the hyperparameter λ in Eq. (1) as all techniques based on optimization
with regularization terms [5]. In Fig. 9(b), we compare the LORS approach with
different values of λ using the challenging Nordland dataset. In the comparisons
in Fig. 9(b), the sequence length f = 5 and the representativeness threshold γ =
90% are applied. It is observed from 9(b) that the best performance is achieved
when λ = 1 when the full version LORS is introduced (λ �= 0). When λ = 0,
the LORS method reduces to the naive case that all templates in every scenario
are used for the place representation. Although it has the highest long-term
place matching performance due to the full information utilization, it cannot
receive the benefits by the LORS method, including the scalability in real world
long-term AR-based information delivery applications.

Our LORS method is a general representation learning framework. The raw
feature engineering is not the focus of our LORS method. In our experimental
evaluations, the same HOG descriptor is applied based on the prior knowledge
that it performs well in both CMU-VL and Nordland datasets [5]. The perfor-
mance may be further improved if other advanced features (either single feature
or multimodal features) are applied in our LORS method.
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Fig. 9. Parameter analysis of the proposed LORS approach over the Nordland dataset
across different seasons.

4 Conclusion

In this paper, we propose the novel LORS approach that integrates information
from multiple environmental scenarios to build a comprehensive representation
model to improve long-term place and scene matching, with the ultimate goal to
enable long-term AR-based information delivery in collaborative human-robot
perception applications. LORS is formulated as a regularized optimization prob-
lem, in order to adaptively select only a small subset of most representative
scene templates and fuse them into a representation for place representation,
which makes LORS highly scalable to long-term changes in real-world AR-based
information delivery applications. We further develop an optimization solver
that possesses a guarantee to converge to the global optima theoretically. We
conduct experiments based upon two public datasets for benchmarking long-
term place and scene matching. The promising results have shown performance
improvement resulted from the LORS approach.
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