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Abstract

Perception is one of the several fundamental abilities required by robots, and it also poses significant challenges, espe-

cially in real-world field applications. Long-term autonomy introduces additional difficulties to robot perception, includ-

ing short- and long-term changes of the robot operation environment (e.g., lighting changes). In this article, we propose

an innovative human-inspired approach named robot perceptual adaptation (ROPA) that is able to calibrate perception

according to the environment context, which enables perceptual adaptation in response to environmental variations.

ROPA jointly performs feature learning, sensor fusion, and perception calibration under a unified regularized optimiza-

tion framework. We also implement a new algorithm to solve the formulated optimization problem, which has a theoretical

guarantee to converge to the optimal solution. In addition, we collect a large-scale dataset from physical robots in the

field, called perceptual adaptation to environment changes (PEAC), with the aim to benchmark methods for robot adapta-

tion to short-term and long-term, and fast and gradual lighting changes for human detection based upon different feature

modalities extracted from color and depth sensors. Utilizing the PEAC dataset, we conduct extensive experiments in the

application of human recognition and following in various scenarios to evaluate ROPA. Experimental results have vali-

dated that the ROPA approach obtains promising performance in terms of accuracy and efficiency, and effectively adapts

robot perception to address short-term and long-term lighting changes in human detection and following applications.
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1. Introduction

Perception is an essential capability for autonomous robots

to perceive the surrounding world and their own states so

that they can accomplish other fundamental functionalities,

such as navigation and human–robot teaming. For example,

robots following humans to perform search and rescue mis-

sions and robots working collaboratively in human–robot

teaming both need the ability to collect information about

their environments to make decisions; robots also need to

collect information about themselves and terrain character-

istics to perform navigation in unstructured field

environments.

While the robot perception research community has

made impressive strides over recent years, it remains an

unsolved problem for real-world field robotics applications,

especially for robots that operate in dynamic and unstruc-

tured field environments. Several key challenges in robot

perception must be addressed. As modern robotic plat-

forms are often equipped with a variety of sensors it is

necessary to effectively integrate this multisensory data. In

addition, there is often limited on-board computing power

for robots operating in field environments, and efficient

algorithms are required to deliver real-time performance

with this limited computational power.

In the past several years, the robotics community has

paid more attention towards long-term autonomy: robots

that are able to operate for days, months, years, and eventu-

ally a lifetime. Long-term autonomy introduces new addi-

tional challenges to robot perception. For example, as

demonstrated in Figure 1, when robots follow a human

teammate to perform search and rescue missions over long
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periods of time, robots often need to operate in indoor and

outdoor environments, navigate between dark tunnels and

bright open areas, and perform human detection under sig-

nificant illumination variations at different times of the day.

These changing, unstructured field environments often

cause failures for robot perception, such as an inability to

continue tracking teammates. Thus, addressing the short-

term and long-term environment changes is vital to enable

long-term autonomy.

Several methods were previously implemented to

address the problem of long-term autonomy in dynamic

unstructured environments. A widely used paradigm is to

learn a unified representation of unstructured environ-

ments, which can be applied to various scenarios at differ-

ent time. For example, in long-term place recognition (also

know as loop-closure detection), methods based on holistic

layouts (Han et al., 2017a; Wu and Rehg, 2011) or land-

marks (Sunderhauf et al., 2015; Yuan et al., 2011) were

designed to construct a representation of the environment

that is robust to long-term variations over time to find a

match with previously visited places. These techniques

look past the changes of the environments over discrete

time points (e.g., morning versus evening and summer ver-

sus winter) to determine the underlying place features that

are most representative. However, these techniques learn

fixed unified representations that do not adapt or change

according to environment dynamics. A conventional robot

adaptation paradigm is based upon case-based reasoning

(Watson and Marir, 1994), which accomplishes adaptation

by switching between multiple perception modalities

depending upon the current context. However, they are lim-

ited to cases that have been manually predefined, which

makes them impractical for dynamically changing unstruc-

tured environments that may have a large number of con-

text cases in a continuous and high-dimensional space. In

addition, online learning (Hagras et al., 2004; Liu et al.,

2008; Tapus et al., 2010) was also widely studied, where

adaptation is achieved by continuously training the model

using streams of data in an online fashion. Because online

learning models drift and often require many iterations to

converge to an optimal model again, they are less effective

in scenarios when a robot needs to adapt to fast or repeated

changes of the environment.

In this article, we propose a novel approach named robot

perceptual adaptation (ROPA) that learns a dynamical

fusion of multisensory perception data, which is adaptive to

continuous short-term and long-term environment changes.

ROPA is inspired by the observation that the human eye is

able to adapt to a wide range of lighting conditions, and by

the phycological findings in perceptual adaptation of

humans. Human perceptual adaptation is a fundamental

property of perceptual processing to ‘‘calibrate perception

to current inputs’’ (Rhodes et al., 2010) and to ‘‘maintain

the match between visual coding and the visual environ-

ment’’ (Vinas et al., 2012; Webster, 2011). Our application

in this article focuses on human detection based upon dif-

ferent types of features extracted from color and depth sen-

sors installed on a mobile robot to perform long-term

human teammate following. During real-world human–

robot teaming in a field environment, autonomous robots

Fig. 1. Motivating examples of robot perceptual adaptation in human teammate following applications. When a robot follows a

human during a long-term operation (e.g., search and rescue), the robot requires the capability of perceptual adaptation to adapt to fast

changes (e.g., when moving from a dark tunnel to a bright open area shown in the top row) and long-term changes (e.g., different

times of the day shown in the bottom row) and in order to avoid perception failures. The problem of robot adaptation to fast and

dramatic environment changes has not yet been well addressed. For example, given a stream of color and depth data as the input,

existing methods of human detection cannot adaptively choose sensing modalities and often lose the person when the robot travels

from a dark mine to a bright open area with fast and dramatic lighting changes.
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often need to follow a human teammate to perform certain

operations (e.g., following a skier while capturing videos

and following a rescuer while carrying equipment as shown

in Figure 1) in unstructured and dynamic scenarios that

evolve over time.

ROPA is a principled approach that formulates percep-

tual adaptation as a joint learning problem to simultane-

ously learn a base perception model to optimally fuse

multisensory input data and a calibration term to adapt to

environment changes. In order to fuse multisensory inputs,

we implement sparsity-inducing norms that enforce the

base perception model to learn sparse weights of multisen-

sory input features and apply the weights for data fusion.

To achieve perception calibration, we estimate the represen-

tativeness of the input feature modalities.

Representativeness of a feature modality is referred to as

its capability to represent the environment. When the envi-

ronment changes, the representativeness of each feature

modality also changes (e.g., depth can better represent dark

environments). Accordingly, by automatically selecting fea-

ture modalities that are more representative in a specific

environment, our approach provides a calibration of the

perception model according to the environmental change.

All the above components are mathematically integrated

into a joint learning formulation under the unified theoreti-

cal framework of regularized optimization. In long-term

human following, for each of new data instances ROPA

uses the joint base perception model and calibration term

to classify humans under environment changes; classifica-

tion results are applied by a decision-making module to

control the robot to navigate and follow the human. In

order to evaluate ROPA and benchmark techniques for

robot perceptual adaptation in human-following applica-

tions, we collect a new large-scale dataset called PEAC.

The dataset consists of multisensory perception input data

collected from physical mobile robots in real-world field

applications under short-term and long-term environment

variations. Our experimental results over the PEAC dataset

have validated that the proposed approach outperforms pre-

vious state-of-the-art methods for human following, obtains

real-time performance, and is capable to address long-term

and short-term environment changes.

The contributions of this article1 are as follows.

� We propose a fresh human-inspired idea that addresses

a new research problem of robot perceptual adaptation

to short- and long-term environment variations through

calibrating robot perception to the current context in

teammate following applications.
� We introduce ROPA that estimates the importance of

heterogenous sensory data, integrates all information to

build a perception model, and, more importantly, cali-

brates the perception model to adapt to short- and long-

term variations of the environment.
� We implement a new algorithm to solve the formulated

optimization problem, which possesses a theoretical

guarantee to converge to the optimal solution.

� As a practical contribution, we collect a new large-

scale dataset from mobile robots, called perceptual

adaptation to environment changes (PEAC), which

includes three representative human-following scenar-

ios of long-term autonomy in field applications to

benchmark methods for robot adaptation to short- and

long-term environment changes.

The remainder of this article is organized as follows. We

review the related work on robot perception and adaptation

in Section 2. The proposed adaptation approach is dis-

cussed in Section 3, and its optimization solver is described

in Section 3.4. After describing the new dataset and our

applications, we present and analyze the experimental

results in Section 5. Finally, we conclude the article in

Section 7.

2. Related work

In this section, we provide a review of related research on

long-term autonomy, robot adaptation, and human follow-

ing. Long-term autonomy has received an increase in atten-

tion from the robotics community, because of increasing

use of robots in environments presenting long-term

dynamics (for example, robot following of humans in field

environments throughout long periods of time can experi-

ence long-term changes). Robot adaptation is considered

one viable solution to enable long-term autonomy, as adap-

tation enables the robot to cope with the changing

environment.

2.1. Long-term autonomy

As robots are leaving factories and entering unstructured

and dynamic environments, the ability of robots to reliably

operate over long periods of time under dynamically chang-

ing conditions needs to be addressed. Several learning-

based approaches have been proposed to support robot

long-term autonomy.

These approaches can be generally categorized into two

paradigms: online learning and representation learning. (1)

Online learning methods address long-term autonomy by

continuously or iteratively updating model parameters dur-

ing task execution (Kleiner et al., 2002; Thrun and

Mitchell, 1995; White et al., 2012). The online learning

paradigm is widely applied to a variety of applications with

robots operating in dynamic or evolving environments

(Leite et al., 2013), including health care, education, and

assistive robotics in work Kanda et al. (2010) and home

Fernaeus et al. (2010) environments. (2) Representation

learning aims at learning from data to construct a represen-

tation of the robot’s surrounding environment, which is

robust or insensitive to environment variations. This para-

digm is widely used in long-term place recognition (also

known as loop-closure detection) to achieve simultaneous

localization and mapping (SLAM) in long-term settings

(Lowry et al., 2014; Neubert et al., 2013; Rosen et al.,
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2016; Sünderhauf et al., 2014). Most of the learning tech-

niques for long-term place recognition focus on creating

representations that encode the holistic layout of the envi-

ronment based upon global feature extraction (Lowry et al.,

2016), deep learning (Arroyo et al., 2016; Sunderhauf

et al., 2015), multimodal feature integration (Han et al.,

2016), and spatio-temporal fusion (Zhang et al., 2016).

Several recent methods use landmarks to create long-term

environment representations (Sunderhauf et al., 2015; Yuan

et al., 2011). However, these methods are specifically

implemented for place recognition or robot localization

problems, and cannot be applied to appropriate perception

of objects of interest under short- and long-term context or

environment changes. Tung et al. (2019) evaluated YOLO’s

(Redmon et al., 2016) performance during long-term

changes on detecting an object of interest over long periods

of time under various lighting conditions. It was observed

that YOLO continuously struggles to detect the same object

during sudden changes and during night time. Online

learning methods lack the ability to address dramatic and

fast changes. Although, they are effective in adapting to

environments with slow and gradual changes, they fail

under drastic changing conditions as they need time to

converge.

2.2. Robot adaptation

Although robot learning (Argall et al., 2009) has been

addressed by many researchers, robot adaptation still

remains to receive comparatively less attention. This is

because many robot systems are designed to be used in very

specific domains for a brief period of time (Shibata and

Tanie, 2000; Thrun et al., 1999). Early research focused on

highlevel behavior-based methods to address robot adapta-

tion in general. For example, Parker (2000) developed vari-

ous architectures to enable teams of heterogeneous robots

to dynamically adapt their actions over time. Following a

similar direction, case-based reasoning (Watson and Marir,

1994) methods were used by Floyd et al. (2015) and Zhang

et al. (2005) for robot behavioral adaptation in evolving

environments. Another adaptation scheme was proposed in

Dettmann et al. (2014) to control complex robots, which

selects a solution from a library of well-performing solu-

tions, given specific tasks and conditions. In these early

methods, robot adaptation is generally manually pre-deter-

mined, requiring significant domain expertise.

Adaptation based on human intent is studied in the

domain of human–robot interaction and collaboration. One

of the key components of this adaptation is to be able to

recognize human intent and activities (Evrard et al., 2009;

Gribovskaya et al., 2011; Kosuge and Kazamura, 1997).

For example, a robot may need to recognize human intent

and activities based upon visual feedback (Agravante et al.,

2014) or audio command (Medina et al., 2012). Another

popular learning-based adaptation paradigm is reinforce-

ment learning, which is usually designed for robot behavior

adaptation (Jevtić et al., 2018; Mitsunaga et al., 2006;

Ritschel and André, 2017). Recently, several methods

(Kruijff- Korbayová et al., 2015; Li et al., 2015; Nikolaidis

et al., 2017a,b) studied co-adaptation problems addressing

how robots and humans on the same team can collabora-

tively adapt to each other and complete the joint task effec-

tively. Almost all learning-based methods focus on

behavior adaptation. The critical problem of robot percep-

tual adaptation has not been well understood and studied.

2.3. Human following

A large portion of methods used in human following typi-

cally involve detecting humans (Dalal et al., 2006; Redmon

et al., 2016) and tracking humans (Nam and Han, 2016;

Sminchisescu and Triggs, 2003).

Researchers have tried to solve the problem of human

following using different approaches. Most of these meth-

ods, in general, involve dividing the query image into sev-

eral regions and using region proposals to predict the

bounding boxes the human might be in Redmon et al.

(2016) and Ren et al. (2015). The core of most of these

methods involve both feature extraction (to represent the

regions from the bounding box in a different representation

space) and then a classifier (to classify if the input feature

representation of that region is of a human or not). Feature

extraction methods can be further categorized into local fea-

tures (Bay et al., 2006; Calonder et al., 2010; Mikolajczyk

and Schmid, 2001; Rublee et al., 2011) that describe the

local information from different regions of interest, and glo-

bal features (Arroyo et al., 2015; Dalal and Triggs, 2005;

Oliva and Torralba, 2006) that generally describe the image

as a whole. A global feature vector is generated based on

the feature statistics. Dalal and Triggs (2005) is one of the

most used global features for whole-body human detection

that captures the local shape and edge information of the

whole image. Dalal et al. (2006) used optical flow field’s

internal difference to recognize moving humans. While

local and global features can both be used to detect humans,

global features have proved to give better results (Wang

et al., 2009). Recently, many methods use a combination of

different sensors to achieve the capability of human detec-

tion in autonomous robots (Keller et al., 2011; Xia et al.,

2011). It has also been proven that use of multi-sensory and

multi-feature representation can significantly improve per-

formance in long-term settings (Han et al., 2017a; Siva and

Zhang, 2018a). Although these methods perform well in

most scenarios, they cannot be considered in situations

where the robot needs to adapt with the environment. Our

approach can take in values from different sensors and cali-

brate their importance based on the environmental context,

allowing robots the ability to adapt with the environment.

3. The ROPA approach

To address multisensory robot perceptual adaptation in

long-term autonomy, we propose the ROPA approach to
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learn and calibrate a perception model that can adapt to

short-term and long-term environment changes.

Notation. Matrices are represented by boldface upper-

case letters, and vectors by boldface lowercase letters.

Given a matrix U= fuijg 2Rn×m, we represent the ith

row and jth column as ui and uj, respectively. The ‘2-norm

of the vector u is defined as kuk2 =
ffiffiffiffiffiffiffiffi
u>u
p

. The Frobenius

norm of the matrix U is defined as

kUkF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i = 1

Pn
j = 1 u2

ij

q
.

3.1. Multimodal sensor fusion

Given a collection of n data instances (i.e., data samples in

a dataset), the extracted normalized feature vectors are rep-

resented as X= ½x1, x2, . . . , xn� 2Rd × n, where xi 2Rd

is the feature vector from the ith instance. We assume that

the features are extracted from different robot sensors (e.g.,

color and depth), and various types of features are

extracted, with each type named a modality. That is, a mod-

ality is the set of features that are computed using a feature

extraction method from the input of a specific sensor.

Then, each heterogeneous feature vector xi 2Rd is

assumed to consist of m-modalities of normalized features,

such that d =
Pm

j = 1 dj. The label vector of classes associ-

ated with X is denoted by Y= ½y1; y2; . . . ; yn� 2Rn× c,

where c is the number of classes. Each element yij of the

matrix Y indicates how likely the input feature vector xi

belongs to the jth class and is manually labeled as the

ground truth during the training phase.

Then, we formulate the multisensory recognition task as

an optimization problem using the objective:

min
W
k Y� (X>W+ 1nb

>) k2
F ð1Þ

where 1n 2Rn× 1 is the constant vector of all ones,

b 2Rc× 1 is the bias vector that can be calculated by

b=Y>1n=n. The solution to the optimization problem in

(1) is a parameter matrix W= ½w1,w2, . . . ,wc� 2Rd × c,

which consists of the weights wi 2Rd of each element in

the feature vector with respect to the ith class.

Different types of features encode different attributes of

the environment (e.g., shape, color, and edges). When fus-

ing the features, some modalities are more informative than

others depending on the robot operation environment, and

it is desirable to estimate the importance of each modality.

Inspired by sparse optimization (Han et al., 2017a), to iden-

tify discriminative modalities, we design a norm RM (W) as

a regularizer to (1), which enforces sparsity among the

modalities and the grouping effect of the features within

the same modality. The RM -norm can be expressed as

RM (W)=
Pc

i = 1

Pm
j = 1 k w

j
ik2, which applies the ‘2-norm

to the weights of feature elements within each modality and

the ‘1-norm across different modalities. As RM encodes

the weight structure among modalities, we call it a modality

norm.

As modern robots are usually equipped with a variety of

sensors (e.g., color and depth), it is also desirable to esti-

mate the importance of each sensor for multisensory robot

perception. For example, a robot operating in dark can ben-

efit more from depth sensors rather than color sensors. To

meet this need, we introduce a sensory norm RS to identify

the discriminative sensors, which is defined as

RS(W)=
Pc

i = 1

Pl
k = 1 k wk

i k2. It applies the ‘2-norm to

the weights of the features computed from the same sensor,

and applies the ‘1-norm to the weights of features from dif-

ferent sensors.

By applying both modality and sensory norms, we for-

mulate multisensory sensor fusion as a regularized optimi-

zation problem with the following objective function

(where a is a trade-off hyperparameter):

min
W
k Y� (X>W+ 1nb

>) k2
F + a(RM (W)+RS(W))

ð2Þ

3.2. Perception calibration

The key novelty of this article is the introduction of the per-

ception calibration capability, which is inspired by the psy-

chology study on how human perception adapts in a given

environmental context. Mathematically, we denote the envi-

ronmental context as a matrix E= ½e1, e2, . . . , en� 2Rs× n,

where ei = ½e1
i , e

2
i , . . . , es

i �
> 2Rs is a low-dimensional

vector consisting of s environmental context variables (e.g.,

lighting, fog intensity, and ground traction) obtained along

with the ith data instance.

To achieve perception calibration, we estimate the repre-

sentativeness of each feature to represent the environmental

context. Representativeness of a feature is referred to as its

capability of representing the environment. When the envi-

ronmental context changes (e.g., lighting variations), we

can estimate the feature representativeness change to still

represent the environment under such context changes.

Therefore, estimating the feature representativeness change

encodes our insight of calibrating the perception model

(i.e., dynamically adjusting the weights of the features)

according to the context. To achieve our insight, two proce-

dures need to be performed: (1) computing the representa-

tiveness of the features to represent the environment in

each instance, and (2) associating the computed feature

representativeness with the context variables.

We denote the feature representativeness to represent

the environment in the instances as G= ½g1,
g2, . . . , gn�> 2Rn× d . Then, each gi 2Rd denotes the

representativeness of the feature vector xi to represent the

environment, which can be estimated by gixi = 1. By com-

puting the Moore–Penrose inverse (also known as the

pseudo-inverse), we can obtain gi = x>i (xix
>
i )
�1.

We associate the representativeness matrix G (of the

features to represent the environment) with the context

variables through designing a novel loss function
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L(G,E;V), with the objective of learning a projection

(parameterized by V) from the context variables E to

encode G. Specifically, the loss function L is defined as

L(G,E;V)= k G� E>V k2
F ð3Þ

where the parameter matrix V 2Rs× d includes the

weights of the environment context variables with respect

to the features. That is, V captures the underlying informa-

tion of how much each of the elements in the feature vec-

tors should change, given the change in the environmental

context.

Similar to the motivation of estimating the importance

of features and sensors, it is desirable to learn the impor-

tance of the environment context variables to calibrate the

perception model. Therefore, we develop the new context

norm R over the parameter matrix V, defined as

RC(V)=
Ps

p = 1 k vpk2, which enforces the sparsity

between the environment context variables with respect to

all features.

Therefore, to adapt to short-term and long-term environ-

ment changes, we integrate the proposed perceptual cali-

bration capability with multisensory fusion. We formulate

multisensory perceptual adaptation as a joint learning prob-

lem under the unified regularized optimization framework,

with the final objective function:

min
W,V
k Y� (X>W+ 1nb

>) k2
F + k G� E>V k2

F

+ a(RM (W+RS(W))+ bRC(V)
ð4Þ

where b is a trade-off hyperparameter.

3.3 Multisensory robot perceptual adaptation

After solving the formulated regularized optimization

problem in (4) during training (using the solver in

Algorithm 1), we obtain the optimal W�= ½w�1,w�2, . . . ,w�c �
and V�. Then, during online execution, given a newly

acquired data instance x and its environmental context vari-

able e, adaptive robot perception to determine the class

label y(x, e) can be performed by

y(x, e)= max
i

(x>)(diag(e>V�)w�i +w�i )+ bi ð5Þ

where diag(�) denotes a function to covert a vector into a

diagonal matrix. Given any vector a 2 <z, diag(a)=
a× Iz× z, where I is an identity matrix. The output of (5)

provides the decision of whether a human is present or not.

Given a query feature vector x, and its associated environ-

mental context e, the term diag(e>V�)w�i provides an esti-

mation of the calibration needed to adjust each feature

weight given e for the query x. This calibration is then

added to the feature weights w to determine the class label.

One of the advantages of our approach is that classifica-

tion is integrated with feature learning and model calibra-

tion under the unified regularized optimization framework,

thus eliminating the requirement of using additional classi-

fiers. In addition, our formulation is based on convex linear

models, which makes model parameter estimation and

online inference highly efficient. Thus, ROPA is able to

achieve high-speed onboard processing, which can signifi-

cantly benefit real-time robotics applications.

3.4. Optimization algorithm

Although our formulation is convex, the objective function

in (4) is difficult to solve in general because of the three

non-smooth regularizers. Another contribution of this arti-

cle is that we implement an iterative algorithm to solve the

optimization problem,which is presented in Algorithm 1.

To learn the optimal W, we compute the derivative of

the objective function in (4) with respect to wi(1 ł i ł c)
and set it to a zero vector, as follows:

XX>wi � X yi � bið Þ+ aDiwi + abDiwi = 0 ð6Þ

Algorithm 1. An iterative algorithm to solve the formulated optimization problem in (4).

Input : Feature matrix X 2Rd × n, label matrix Y 2Rn× c, context variables E 2Rs× n

1. Calculate the representativeness matrix G from X.

2. Let t = 1. Initialize W(t) and V(t) by solving min
W
k Y� (X>W+ 1nb

>) k2
F and min

V
k G� E>V k2

F .

3. while not converge do

4. Calculate the block diagonal matrix Di(t + 1)(1 ł i ł c), where the jth block is 1

2kwj

i
(t)k2

Ij.

5. Calculate the block diagonal matrix cDi (t + 1)(1 ł i ł c), where the kth block is 1
2kwk

i
(t)k2

Ik .

6. Calculate the block diagonal matrix eDj(t + 1)(1 ł j ł d), where the pth block is 1
2kvp

j
(t)k2

Ip.

7. For each wi(1 ł i ł c), wi(t + 1)= (XX>+ aDi(t + 1)+ acDi (t + 1))�1X(yi � bi):

8. For each vj(1 ł j ł d), vd = (EE>+ beDj(t + 1))�1Egj

9. t = t + 1.

Output: W=W(t) 2R
p× c ;V=V(t) 2R

s× d
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where Di(1 ł i ł c) is a block diagonal matrix with jth

diagonal block computed by 1

2kwj

i
k2
Ij; w

j
i is the jth segment

of wi consisting of the weights from the jth feature modal-

ity; bDi is a block diagonal matrix with the kth diagonal

block computed by 1
2kwk

i
k2
Ik ; and wk

i is the kth segment of

wi consisting of the weights of features from kth modality.

After solving (6), the vector wi can be computed by

wi = (XX>+ aDi + abDi)�1X(yi � bi) ð7Þ

To compute the optimal value for V, compute the deriva-

tive of the objective function in (4) with respect to the col-

umns vj, (1 ł j ł d) of V and set the resulting expression to

zero, as follows:

EE>vj � Egj + beDjvj = 0 ð8Þ

where eDi is a block diagonal matrix with jth block com-

puted by 1
2kvp

j
k2
Ip; v

p
j is the pth segment of vj that specifies

the weights of the pth environmental context variable with

respect to the jth feature modality. Solving the above equa-

tion, we can obtain

vj = (EE>+ beDj)�1Egj ð9Þ

Because Di and bDi depend on W, and because eDj

depends on V, Di, bDi, and eDj are also unknown variables.

Therefore, we design and implement an iterative algorithm

to solve this optimization problem, which is presented in

Algorithm 1. The proposed optimization solver holds a the-

oretical convergence guarantee to the global optimum, as

described by theorem 1, which proves that Algorithm 1

decreases the value of the objective function with each

iteration and converges to the global optimal value. First,

we present a lemma.

Lemma 1. For any two given vectors a and b, the follow-

ing inequality relation holds: k bk2 � kbk2
2

2kak2
ł k ak2�

kak2
2

2kak2

Proof. We have

� ( k bk2� k ak2)
2 ł 0 ð10Þ

� k b k2
2 � k a k2

2 + 2 k bk2 k ak2 ł 0 ð11Þ

2 k bk2 k ak2� k b k2
2 ł k a k2

2 ð12Þ

k bk2 �
k b k2

2

2 k ak2

ł k ak2 �
k a k2

2

2 k ak2

ð13Þ

Theorem 1. Algorithm 1 converges to the optimal solution

to the optimization problem in (4)

Proof. From Algorithm 1, we know that

W(t + 1)= min
W
k Y� (X>W+ 1nb

>) k2
F

+ a
Xc

i = 1

w>i (t + 1)Di(t + 1)wi(t + 1)

+ a
Xc

i = 1

w>i (t + 1)bDi(t + 1)wi(t + 1)

ð14Þ

and

V(t + 1)= min
V
k G� E>V k2

F

+ b
Xd

j = 1

v>j (t + 1)eDj(t + 1)vj(t + 1)
ð15Þ

Then it can be derived that

F (t + 1)+ a
Xc

i = 1

w>i (t + 1)Di(t + 1)wi(t + 1)

+ a
Xc

i = 1

w>i (t + 1)bDi(t + 1)wi(t + 1)

łF (t)+ a
Xc

i = 1

w>i (t)D
i(t)wi(t)+ a

Xc

i = 1

w>i (t)
bDi(t)wi(t)

ð16Þ

and

J (t + 1)+ b
Xd

j = 1

v>j (t + 1)eDj(t + 1)vj(t + 1)łJ (t)

+ b
Xd

j = 1

v>j (t)
eDj(t)vj(t)

ð17Þ

substituting the values of Di, bDi and eDj, we obtain

F (t + 1)+ a
Xc

i = 1

Xm

j = 1

k wj
i(t + 1) k2

2

2 k wj
i(t)k2

+ a
Xc

i = 1

Xl

k = 1

k wk
i (t + 1) k2

2

2 k wk
i (t)k2

łF (t)+ a
Xc

i = 1

Xm

j = 1

k wj
i(t) k2

2

2 k wj
i(t)k2

+ a
Xc

i = 1

Xl

k = 1

k wk
i (t) k2

2

2 k wk
i (t)k2

ð18Þ

and,

J (t + 1)+ b
Xs

p = 1

Xd

j = 1

k vp
j (t + 1) k2

2

2 k vp
j (t)k2

łJ (t)+ b
Xs

p = 1

Xd

j = 1

k vp
j (t) k2

2

2 k vp
j (t)k2

ð19Þ
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From Lemma 1, we can derive the following equations:

Xc

i = 1

Xm

j = 1

k wj
ik2 �

Xc

i = 1

Xm

j = 1

k wj
i(t + 1) k2

2

2 k wj
i(t)k2

ł
Xc

i = 1

Xm

j = 1

k wj
ik2 �

Xc

i = 1

Xm

j = 1

k wj
i(t) k2

2

2 k wj
i(t)k2

ð20Þ

Xc

i = 1

Xl

k = 1

k wk
i k2 �

Xc

i = 1

Xl

k = 1

k wk
i (t + 1) k2

2

2 k wk
i (t)k2

ł
Xc

i = 1

Xl

k = 1

k wk
i k2 �

Xc

i = 1

Xl

k = 1

k wk
i (t) k2

2

2 k wk
i (t)k2

ð21Þ

Xs

p = 1

Xd

j = 1

k vp
j k2 �

Xs

p = 1

Xd

j = 1

k vp
j (t + 1) k2

2

2 k vp
j (t)k2

ł
Xs

p = 1

Xd

j = 1

k vp
j k2 �

Xs

p = 1

Xd

j = 1

k vp
j (t) k2

2

2 k vp
j (t)k2

ð22Þ

Adding Equations (18)–(22) on both sides we get that

F (t + 1)+J (t + 1)+ a
Xc

i = 1

Xm

j = 1

k wj
i(t + 1)k2

+ a
Xc

i = 1

Xl

k = 1

k wk
i (t + 1)k2 +

Xs

p = 1

Xd

j = 1

b k vp
j (t + 1)k2

łF (t)+J (t)+ a
Xc

i = 1

Xm

j = 1

k wj
i(t)k2

+ a
Xc

i = 1

Xl

k = 1

k wk
i (t)k2 +

Xs

p = 1

Xd

j = 1

b k vp
j (t)k2

ð23Þ

Equation (23) proves that the value of the objective func-

tion decreases in each iteration. Because the formulated

objective function is convex, Algorithm 1 converges to the

optimal solution.

As the optimization problem in (4) is convex,

Algorithm 1 converges to the global optimal solution fast.

In each iteration of our algorithm, computing steps 4–6 is

trivial. We compute steps 7 and 8 by solving a system of

linear equations with a quadratic complexity.

4. Dataset and implementation

4.1. The PEAC dataset

A practical contribution of this research is the collection of

a new dataset of PEAC. Although long-term autonomy has

been recently attracting an increasing attention in robotics,

before this work, no dataset is publicly available for bench-

marking robot perceptual adaptation, which consists of

multisensory perception data collected from physical robots

in real-world field applications under short-term and long-

term lighting changes. Motivated by this desire, we col-

lected the PEAC dataset. We utilized the Clearpath Husky

and Jackal mobile robots (shown in Figure 2) to follow and

detect an individual human subject. The robots are

equipped with the Asus Xtion PRO structured-light camera

without any automatic gains to collect color-depth data,

and the Adafruit TSL2561 digital luminosity sensor to col-

lect luminosity data. The color and depth images have a

resolution of 640× 480. The luminosity readings is nor-

malized between 0 (no lighting intensity) to 1 (maximum

lighting intensity). Both structure-light camera and lumin-

osity sensor run at 30 frames per second.

During data collection, we assume the robot is perform-

ing a human-following task, which is a desired capability in

robotics applications (e.g., to carry rescue gear for humans

in a long-term search and rescue operation). The robots are

manually controlled by a separate human operator to follow

a single human teammate walking in front of the robot. The

dataset is collected in three different scenarios shown in

Figure 2.

� Scenario I (entering–exiting a mine): A mobile robot

follows a human subject entering and exiting two dif-

ferent mine drifts (i.e., horizontal openings made in a

mine). One drift is dark (Figure 2), and the other has

light bulbs installed in the drift (Figure 3). When the

robot travels from the inside to the outside of the mine

drift (or vice versa), the environment exhibits signifi-

cant lighting changes. This testing scenario represents

possible situations when robot performs underground

search and rescue, for example, in mine, cave, and sub-

way environments.
� Scenario II (traveling indoor–outdoor): A robot follows

an individual human to travel inside and outside of a

Fig. 2. Illustration of the scenarios in which the PEAC dataset was collected for the task of human teammate following.
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building. This scenario may happen in robot-assisted

daily living and/or urban search and rescue applica-

tions. Similar to Scenario I, this scenario contains the

challenge of fast illumination changes when the robot

enters and leaves the building, as shown in Figures 4.
� Scenario III (following all day): A mobile robot fol-

lows a human subject in an outdoor environment in

different times of then day from dawn to dusk, and

across different months. The environment changes dra-

matically, especially lighting levels from noon to late

evening (Figure 5). In the daytime under strong sun-

shine, structured-light depth sensors fail. In evenings

with poor lighting conditions, color cameras do not

work well. This Scenario III includes significant chal-

lenges caused by long-term environment changes

across a day and seasons.

In each scenario, we collect 20 instances of human follow-

ing, each consisting of 700–1,000 color-depth images. In

addition, we collect the light level data (in lux) using digital

luminosity sensors installed on the robots to document

lighting variations in the environments. The ground truth of

human detection is manually labeled by bounding human

subjects in the color-depth scene with a box. The PEAC

dataset is publicly available at http://hcr.mines.edu/code/

PEAC.html.

4.2. Implementation

Three real-time feature extraction methods were applied to

compute heterogeneous features from the proposed regions

of the color and depth images readings in our experiments.

(1) Histogram of oriented gradients (HOG) features (Dalal

Fig. 3. Qualitative and quantitative results on Scenario I (entering–exiting a mine). The top row depicts an example of the qualitative

results from the robot’s viewpoint when it follows a human subject to navigate into a dark mine drift from a bright open area. The

bottom row illustrates the importance of color-depth sensor modalities learned and adapted by ROPA.

Fig. 4. Qualitative and quantitative results on Scenario II (traveling indoor–outdoor). The top row illustrates an example of the

recognition results from the robot’s viewpoint when it follows the human to navigate from the inside to the outside of a building. The

bottom row shows the importance of color-depth sensor modalities learned and adapted by our ROPA algorithm.
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and Triggs, 2005) are used to represent shapes by counting

occurrences of gradient orientation. (2) GIST features

(Oliva and Torralba, 2006) are built from the response of

steerable filters at different orientations and scales. (3)

Local difference binary patterns (LBP) features (Arroyo

et al., 2015) compute binary strings from simple intensity

and gradient differences of image grid cells. These three

features are selected because they are widely used in previ-

ous work on long-term place recognition. Each modality of

features from color or depth data is normalized to ensure

that features in the modalities have the same value range.

To ensure real-time performance, we do not use deep fea-

tures. However, in principle, any features that can produce a

vector-based representation can be applied as an input mod-

ality to work with ROPA. The luminosity data is adopted to

represent the context, i.e., the lighting variation. Object pro-

posals are provided by a proposal generation approach

applied on both color and depth data (Ren et al., 2015) to

obtain regions of interest that potentially contain humans.

The current implementation of ROPA is programmed using

a mixture of unoptimized Matlab and C++ on an onboard

Linux computer within the Jackal and Husky robots, which

has an i5 2.5 GHz CPU and 8 GB memory, with no GPU.

Given the detection results of humans from ROPA that

addresses short-term and long-term environmental changes,

human following is performed by a decision-making mod-

ule for robot navigation control. The module used in this

work is implemented using an apprenticeship learning

approach in the general framework of a Markov decision

process (MDP), which is detailed in our previous work

(Han et al., 2017b), which leverages human demonstrations

to learn a navigation policy (e.g., move forward or back-

ward, turn left or right, stop, speed up, slow down, etc.)

based on human detection results.

5. Experiments

In this section, we present and analyze experimental results.

To evaluate the performance of ROPA for multisensory

robot perceptual adaptation, we performed extensive experi-

ments on the PEAC dataset in the human-following task.

To estimate ROPA’s parameters, we employed around

4,000 color-depth frames from Scenario I (entering–exiting

a mine) only for training. Features extracted from color-

depth images using different techniques are concatenated

into a final vector as the input to ROPA. The luminosity

sensor reading is used to encode the context, i.e., environ-

ment lighting changes. Throughout our experiments, we set

the values of the trade-off hyperparameters a and b to 0.1.

In the testing phase, we applied the trained model to the

five instances from Scenario I (entering–exiting a mine),

and the same model to instances from Scenario II (traveling

indoor–outdoor) and Scenario III (following all day). That

is, no instances from Scenarios II and III were used for

training. Thus, we can evaluate how the ROPA model can

be scaled to previously unseen situations.

To show the advantage of ROPA, we first compared

ROPA with baseline techniques. We implemented baselines

based upon single sensor and single feature type (i.e.,

HOG, LBP, or GIST from color or depth sensor). The deci-

sion model in (5) without the calibration term was applied

along with these features to recognize humans. In addition,

we compared ROPA with previous state-of-the-art methods,

including (1) multimodal convolutional neural network

(mCNN) (Eitel et al., 2015), (2) shared representative

appearance learning (SRAL) (Han et al., 2017a), and (3)

You Only Look Once (YOLO; Redmon et al., 2016). The

used techniques except YOLO were trained on the same set

of data from the PEAC dataset. We used the YOLO model

Fig. 5. Qualitative and quantitative results on Scenario III (following all day). The top row illustrates an example of the qualitative

results from the robot’s viewpoint when it follows a subject to navigate in a campus environment from noon until late evening with

dramatic long-term lighting changes. The bottom row shows the importance of color-depth sensor modalities learned and adapted by

ROPA.
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pretrained by the YOLO’s authors under various illumina-

tion conditions (Redmon and Farhadi, 2018).

5.1. Scenario I (entering–exiting a mine)

The qualitative results obtained by ROPA are illustrated in

Figure 3, which shows that ROPA allows the robot to accu-

rately recognize the human when navigating from a bright

outdoor open area into a dark mine drift under dramatic

illumination changes.

In addition, we compute numerical results to quantita-

tively evaluate ROPA. To evaluate how well ROPA can iden-

tify humans under lighting changes, accuracy is employed

as an evaluation metric. Our ROPA obtains an average accu-

racy of 96.91% in Scenario I. We also compared ROPA with

baseline and previous methods in Scenario I. The compari-

son results are presented in Table 1. It is observed that tech-

niques based on color features (i.e., HOG, LBP, GIST, and

YOLO) generally perform better than methods using depth

features (i.e., HOG-D, LBP-D, and GIST-D). In addition,

through integrating multisensory multimodal features, sen-

sor fusion approaches (i.e., SRAL and mCNN) can outper-

form techniques using single types of features. ROPA

significantly improves performance and obtains the best

accuracy, owing to its capability to immediately calibrate

multisensory perception and adapt to environment changes.

In addition to accuracy, we also evaluate how ROPA can

adapt to environment changes by analyzing the importance

of different sensor modalities, i.e., color and depth in this

experiment. The quantitative results are graphically pre-

sented in Figure 3. It is observed that, when the robot stays

outside of the mine under direct sunshine, it completely

relies on color cues to recognize the subject because the

structured-light depth sensor on the robots fail under direct

sunshine, and cannot provide depth information. ROPA can

automatically learn this fact from data without the require-

ment of hard coding. When the robot follows the human

subject into the mine drift with reduced lighting, we

observe that ROPA starts using the depth information to

combine with color cues to recognize humans, which

demonstrates ROPA’s on-the-fly multisensory perception

calibration capability to adapt to environment changes.

5.2. Scenario II (traveling indoor–outdoor)

We further evaluate ROPA’s performance in Scenario II, in

which a robot identifies and follows a human subject to

travel between the inside and outside of a building. In this

scenario, the robot needs to address the challenge of adapt-

ing to lighting differences, when it travels from the inside

of a building to the outside (or vice versa). In the experi-

ment, the perception model learned in Scenario I is directly

applied to Scenario II without re-training or additional

training, in order to show the ROPA’s capability of adapting

from one scenario to a new, previously unexperienced

scenario.

The qualitative results obtained by ROPA over Scenario

II are shown in Figure 4, which demonstrates that ROPA

can recognize humans while following the subjects travel-

ing from the inside of a building with low lighting levels

into a bright outdoor environment. Quantitatively, ROPA

obtains an average accuracy of 89:72% in identifying

human subjects. In addition, we compare our ROPA

approach with the baseline techniques, and present the

results in Table 1 of the main article. Consistent with the

results observed in Scenario I, methods based on color cues

perform better than methods that employ depth features

only. In indoor environments with a reduced lighting level

(but not completely dark), color cues still contribute to

human recognition. When multisensory multimodal fea-

tures are fused together, SRAL and mCNN obtain an

improved accuracy over the baseline techniques based on a

single type of features only. Owing to the capability of cali-

brating multisensory perception, ROPA adapts to environ-

ment changes and outperforms the baseline and previous

approaches. In addition, Figure 4 graphically illustrates the

importance of the color and depth sensor modalities in the

experiment. It can be observed that as the robot starts to

navigate toward the outside of the building, color cues start

to become more critical to recognize the human subject.

The changes of the sensor weights match the variations of

the surrounding environment, which demonstrates the mul-

tisensory perceptual adaptation capability of the robot

enabled by ROPA.

5.3 Scenario III (following all day)

To evaluate our approach’s multisensory perception adapta-

tion capability to long-term environment variations, we

evaluate ROPA in Scenario III, in which a mobile robot fol-

lows a human to navigate in outdoor campus environments

at different times of the day (e.g., from morning, noon,

afternoon, until evening). In this experiment, the environ-

ment shows significant variations in different hours of the

Table 1. Comparison of average accuracy over all robot

operation scenarios in the PEAC dataset.

Methods Scenario I Scenario II Scenario III

HOG 89:22% 79:00% 27:74%
LBP 81:40% 71:95% 44:83%
GIST 79:53% 71:12% 55:10%
HOG-D 70:11% 65:16% 46:84%
LBP-D 61:07% 70:10% 47:45%
GIST-D 67:57% 48:98% 51:48%
YOLO 88:13% 77:65% 47:08%
SRAL 92:30% 85:07% 51:13%
mCNN 90:65% 87:24% 49:45%
ROPA 96:91% 89:72% 79:17%
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day during long-term robot operations. The perception

model learned in Scenario I is directly used in this new

long-term scenario without re-training, in order to demon-

strate the ROPA’s ability to calibrate perception

automatically.

The qualitative results obtained by ROPA are illustrated

in Figure 5, which demonstrates ROPA’s capability to

recognize humans under long-term lighting changes during

the day. Quantitatively, ROPA obtains an average accuracy

of 79:17%. With no re-training or incremental training,

ROPA can still recognize humans well. However, in gen-

eral, the accuracy is lower than the scenarios with short-

term environment changes. The comparison of our ROPA

approach with baseline and previous state-of-the-art meth-

ods is listed in Table 1. An interesting observation is that

the SRAL and mCNN approaches based on sensor fusion

perform worse than some baseline techniques using a sin-

gle type of features. This phenomenon results from the fact

that for most of the time in this scenario, only color or only

depth information is available (Figure 5). For example,

under the Sun, the depth sensor often fails, while during or

after sunset, the color sensor does not operate well. In this

scenario, sensor fusion paradigms may not be able to work

well.

Adaptation of the importance weights of color and depth

modalities is illustrated in Figure 5. The results validate

that ROPA continuously calibrates multisensory robot per-

ception to the surrounding environment with long-term

changes. When the sunshine is strong (e.g., at the noon

time when the depth sensor does not work), ROPA adapts

to utilize color cues only for perception. On the other hand,

when the environment is very dark (e.g., at 20:00), the

color camera does not work, and ROPA can automatically

calibrate perception to depend on depth cues for recogni-

tion and following. Another interesting observation from

the experimental results is that, the weight of the color sen-

sor at 17:00 is greater than the weight at 16:00, although

the environment has a decreased natural lighting. This

occurs because the street lights were turned on right before

17:00, which provides additional artificial lighting to the

scene, making the overall lighting on the pedestrian path

better than that at 16:00.

6. Discussion

6.1. High-speed processing

Owing to ROPA’s ability to integrate feature fusion, percep-

tion calibration, and classification in the unified formula-

tion, and the efficiency of our convex objective function,

our ROPA approach can achieve high-speed onboard pro-

cessing. To validate this advantage, we perform additional

experiments in Scenario I, using our CPU implementation

on a Jackal robot’s onboard computer. Without counting

the time on extracting HOG, LBP, and GIST features, we

obtain a processing rate at around 100 Hz. When counting

the time for feature extraction, we obtain a processing rate

of around 15 Hz. These results indicate the promise of

ROPA to be applied in real-time robotics applications. In

addition, any feature descriptor can be integrated to the

ROPA approach, which provides the flexility to further

improve the overall processing speed when faster, higher-

quality features are available.

6.2. Feature modality analysis

The proposed ROPA approach is capable to automatically

estimate the importance of each feature modality, and how

much each modality should be calibrated (i.e., calibration).

We perform such experiments in the training phase using

the data instances from Scenario I. The results are illu-

strated in Figure 6. The importance histogram indicates

that, among the feature types used in the experiment, HOG

is the most important in sensor fusion, followed by LBP,

and GIST is the worst. The calibration graph illustrates that

the GIST feature modality from the color data requires the

most calibration, whereas the HOG modalities from both

color and depth cues do not require calibration, in general.

This result indicates that HOG features are relatively insen-

sitive to the lighting changes.

6.3. Hyperparameter selection

The hyperparameters a and b in our formulation (4) are

designed to control the strength of regularization terms

over feature learning and perception calibration, respec-

tively. Their optimal values can be determined using cross-

validation during training. From the result in Figure 7, we

observe that when a = b = 0:1, ROPA statistically obtains

the best accuracy. In general, the range of a,b 2 (0:01, 1)
can result in satisfactory accuracy, which also shows that

both regularization terms are useful.

7. Conclusion

In this article, we have introduced the novel, bio-inspired

approach named ROPA to enable the new robot capability

of calibrating multisensory perception, in order for robots

to adapt to short-term and long-term environment changes.

Fig. 6. Experimental results on feature modality analysis during

the training phase.
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Our focused application in this article aims at the task of long-

term human following in the field environment, which is

essential to real-world human–robot teaming applications.

The ROPA approach has been formulated as a joint

learning problem to simultaneously estimate the representa-

tiveness of each feature modality, integrate heterogeneous

features, and more importantly, calibrate the perception

model to adapt multisensory perception with environmental

changes. In order to fuse multisensory input data, we have

implemented sparsity-inducing norms that enforce the base

perception model to learn sparse weights of the multisen-

sory input features and use the learned weights for multi-

sensory fusion. To achieve perception calibration, we have

estimated the representativeness of the input features to

encode the environment, and provided a calibration of the

base model according to the environmental change. All

components were integrated under the unified theoretical

framework of regularized optimization.

In addition, we have collected the new large-scale

PEAC dataset containing multisensory data instances in

scenarios of robot following of humans in a wide range of

field environments with short-term and long-term environ-

ment changes. This open dataset provides a benchmark to

evaluate and compare the approaches designed for robot

perceptual adaptation to short-term and long-term varia-

tions of the robot operation environment in long-term

human-following applications. We have conducted exten-

sive experiments to evaluate and analyze ROPA in various

scenarios using the PEAC dataset. Experimental results

have validated that, through calibrating perception, ROPA

is able to effectively adapt to environment changes, obtains

promising accuracy and efficiency, and outperforms base-

line and previous methods in dynamic and unstructured

environments in long-term human-following applications.

The proposed mathematical formulation under regular-

ized optimization for ROPA is general and has a potential

to provide a framework that addresses robot adaptation to

other environment and context changes (e.g., terrain

changes and season changes). One of the challenges that

prevent us from extending this approach to other adaptation

scenarios is the lack of data on long-term robot adaptation,

which will be our future work. Another future research can

focus on integrating prior knowledge of cause and effect of

environment changes in the adaptation process.
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Notes

1. A preliminary non-archived version of the article describing

the dataset and initial experimental results was presented as a

spotlight talk at the ICRA Workshop on Robot Teammates

Operating in Dynamic, Unstructured Environments (RT-

DUNE) (Siva and Zhang (2018b)).
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Kruijff-Korbayová I, Colas F, Gianni M, et al. (2015) TRADR

project: Long-term human–robot teaming for robot assisted

disaster response. KI-Künstliche Intelligenz 29(2): 193–201.

Leite I, Martinho C and Paiva A (2013) Social robots for long-

term interaction: A survey. International Journal of Social

Robotics 5(2): 291–308.

Li Y, Tee KP, Chan WL, Yan R, Chua Y and Limbu DK (2015)

Continuous role adaptation for human–robot shared control.

IEEE Transactions on Robotics 31(3): 672–681.

Liu C, Conn K, Sarkar N and Stone W (2008) Online affect detec-

tion and robot behavior adaptation for intervention of children

with autism. IEEE Transactions on Robotics 24(4): 883–896.

Lowry S, Sünderhauf N, Newman P, et al. (2016) Visual place

recognition: A survey. IEEE Transactions on Robotics 32(1):

1–19.

Lowry SM, Milford MJ and Wyeth GF (2014) Transforming

morning to afternoon using linear regression techniques. In:

IEEE International Conference on Robotics and Automation.

Medina JR, Shelley M, Lee D, Takano W and Hirche S (2012)

Towards interactive physical robotic assistance: Parameterizing

motion primitives through natural language. In: IEEE Interna-

tional Conference on Robot and Human Interactive

Communication.

Mikolajczyk K and Schmid C (2001) Indexing based on scale

invariant interest points. In: Proceedings Eighth IEEE Interna-

tional Conference on Computer Vision, 2001 (ICCV 2001),

Vol. 1. IEEE, pp. 525–531.

Mitsunaga N, Smith C, Kanda T, Ishiguro H and Hagita N (2006)

Robot behavior adaptation for human–robot interaction based

on policy gradient reinforcement learning. Journal of the

Robotics Society of Japan 24(7): 820–829.

Nam H and Han B (2016) Learning multi-domain convolutional

neural networks for visual tracking. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 4293–4302.

Neubert P, Sünderhauf N and Protzel P (2013) Appearance change

prediction for long-term navigation across seasons. In: Eur-

opean Conference on Mobile Robots.

Nikolaidis S, Nath S, Procaccia AD and Srinivasa S (2017a)

Game-theoretic modeling of human adaptation in human-robot

collaboration. In: Proceedings of ACM/IEEE International

Conference on Human–Robot Interaction.

Nikolaidis S, Zhu YX, Hsu D and Srinivasa S (2017b) Human–

robot mutual adaptation in shared autonomy. In: ACM/IEEE

International Conference on Human-Robot Interaction.

Oliva A and Torralba A (2006) Building the gist of a scene: The

role of global image features in recognition. Progress in Brain

Research 155: 23–36.

Parker LE (2000) Lifelong adaptation in heterogeneous multi-

robot teams: Response to continual variation in individual

tobot performance. Autonomous Robots 8(3): 239–267.

Redmon J, Divvala S, Girshick R and Farhadi A (2016) You only

look once: Unified, real-time object detection. In: Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pp. 779–788.

Redmon J and Farhadi A (2018) Yolov3: An incremental improve-

ment. arXiv preprint arXiv:1804.02767.

Ren S, He K, Girshick R and Sun J (2015) Faster r-CNN: Towards

real-time object detection with region proposal networks. In:

Advances in Neural Information Processing Systems, pp. 91–

99.

Rhodes G, Watson TL, Jeffery L and Clifford CW (2010) Percep-

tual adaptation helps us identify faces. Vision Research 50(10):

963–968.
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