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Abstract— Over the recent years, long-term place recognition
has attracted an increasing attention to detect loops for large-
scale Simultaneous Localization and Mapping (SLAM) in loopy
environments during long-term autonomy. Almost all existing
methods are designed to work with traditional cameras with a
limited field of view. Recent advances in omnidirectional sensors
offer a robot an opportunity to perceive the entire surrounding
environment. However, no work has existed thus far to research
how omnidirectional sensors can help long-term place recogni-
tion, especially when multiple types of omnidirectional sensory
data are available. In this paper, we propose a novel approach
to integrate observations obtained from multiple sensors from
different viewing angles in the omnidirectional observation in
order to perform multi-directional place recognition in long-
term autonomy. Our approach also answers two new questions
when omnidirectional multisensory data is available for place
recognition, including whether it is possible to recognize a place
with long-term appearance variations when robots approach
it from various directions, and whether observations from
various viewing angles are the same informative. To evaluate
our approach and hypothesis, we have collected the first large-
scale dataset that consists of omnidirectional multisensory
(intensity and depth) data collected in urban and suburban
environments across a year. Experimental results have shown
that our approach is able to achieve multi-directional long-term
place recognition, and identifies the most discriminative viewing
angles from the omnidirectional observation.

I. INTRODUCTION

Place recognition (or loop closure detection) is an essen-

tial component of Simultaneous Localization and Mapping

(SLAM), which has been actively studied to achieve SLAM

in a loopy environment over the past decades. Recently, place

recognition in long-term autonomy has attracted significant

attention. Beyond traditional challenges including perceptual

aliasing and vision-related issues, long-term place recog-

nition introduces a new, significant challenge – long-term

appearance changes [1], [2]. For example, the same outdoor

place on a sunny summer noon and during snowy winter

evening can look very different. It is recognized [3] that the

ability to address long-term appearance variations is essential

for robots to perform SLAM during lifelong operations.

Given the importance of long-term place recognition, sev-

eral representations and matching techniques were proposed

mainly to deal with the long-term appearance variation. Both

global [4], [5], [6] and local [7], [8] features were studied by

existing approaches to represent the scene of a place, with an

observation that representations based upon global features

often perform better [9]. Place matching techniques based
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on individual frames [10], [11] or frame sequences [1], [12],

[13] were also implemented. However, previous long-term

visual place recognition methods assumed that observations

are acquired from traditional cameras with a limited field

of view. Also, all existing methods perform uni-directional

place recognition, assuming that a robot goes back to a

previously visited place facing the same direction.
In this work, we investigate the problem of long-term place

recognition based on omnidirectional perception that allows

a robot to perceive its whole surrounding environment. In

particular, we are interested in answering two new technical

questions, which have not been addressed in the existing

research yet. The questions include: (1) when an omnidirec-

tional observation is used, is it possible to perform multi-

directional long-term place recognition in situations that an

autonomous system approaches the same place from opposite

directions; and (2) whether all angles of view the same

informative, or are certain angles of view more representative

than others in the omnidirectional perception?
Moreover, we introduce a novel principled approach under

the mathematical framework of sparse optimization, which is

capable of automatically learning the importance of the view-

ing angles and integrating omnidirectional perception data to

perform multi-directional long-term place recognition. Fur-

thermore, we introduce a multisensory data fusion paradigm

under the same framework to integrate heterogeneous visual

features that are computed from different types of sensors.

Due to our approach’s ability to incorporate omnidirectional

observations from different sensors, we name our proposed

unified method Fusion of Omnidirectional Multisensory Per-
ception (FOMP).

The contributions of this work are threefold:

• We introduce a new research problem, that is long-term

place recognition based upon omnidirectional multisen-

sory perception, and introduce two technical questions

that are critical in omnidirectional perception but have

not yet been studied in existing long-term place recog-

nition literature.

• We propose the novel FOMP approach, which estimates

the importance of viewing angles and learns discrimina-

tive features, as well as integrates all the information to

construct a discriminative representation for long-term

place recognition in situations when robots approach the

same location from different directions. We also imple-

ment a new optimization solver to solve the formulated

problem, which is guaranteed to converge to the optimal

solution theoretically.

• We collect and make available a new large-scale dataset
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to benchmark methods for multisensory omnidirectional

long-term place recognition. Extensive experiments are

performed using this new dataset to evaluate FOMP, and

to answer the proposed technical questions.

II. RELATED WORK

A. Scene Matching for Place Recognition

Many techniques have been implemented to match a query

observation and the scene template of a previously visited

location. Based on the approach they take towards matching

locations, these methods could be broadly classified into two

categories. That is, either they use a sequence of images to

assert match between two scenes or they follow a image-

to-image matching paradigm. Sequence-based matching de-

pends on a sequence of images to find the best matches be-

tween query and template image sequences, such as used by

SeqSLAM [1] and RAT-SLAM [12]. SeqSLAM computes a

summation of similarity scores of query images and template

sequences to find the best match location. Typically, methods

based on image-to-image matching calculates the distance

metric between a query image and existing templates, with

the maximum score indicating a scene match [14]. Several

techniques also use nearest neighbours search for finding the

best match. For example, FAB-MAP [11] uses a Chow-Liu

tree to get the best match and RTAB-MAP uses a K-d tree

to perform the nearest neighbour search.

The previous methods are designed to work with tradi-

tional cameras with limited views, and cannot integrate om-

nidirectional observations, or perform multi-directional long-

term place recognition, which is the focus of our research.

B. Representation in Long-Term Place Recognition

Most existing place-recognition methods rely on features

to construct a representation with the hope to capture long-

term scene variations. When environments show changes

in illumination conditions, global features outperform local

features [1], [3], [9]. Global features extract features from

the whole image, and often create a representation using

histograms. For example, HOG [5] uses unsigned gradient

changes within each pixels of a grid and stores it as a

histogram. GIST features [4], [15] employ Gabor filters at

different orientations and frequencies to extract information

from the images. Convolutional neural networks (CNN)

[16], [17], [18] are employed to create a representation for

matching image sequences. Local Binary Patterns (LBP)

are used to encode scenes by labelling pixels of an image

by thresholding the neighbourhood of each pixel, which

constructs a representation denoted as a binary vector [6].

Depth information from Kinect-like sensors [19] is also been

used for object-based SLAM.

Recent methods such as [20] show advantages to identify

important features and fuse them together to achieve better

performance on long-term place recognition. In this research,

we follow the same insight and integrate feature learning as a

part of the proposed approach under the unified optimization

framework to improve place recognition during long-term au-

tonomy, through fusing heterogeneous features from various

omnidirectional sensors.

III. THE FOMP APPROACH

We aim at addressing the new problem of utilizing omnidi-

rectional observations to perform long-term place recognition

when robots revisit the same place from different directions.

To address this challenge, we propose the FOMP approach to

estimate the importance of viewing angles and sensor modal-

ities, and to integrate all multisensory omnidirectional data

to perform multi-directional long-term place recognition.
Notation. Matrices are denoted using boldface-capital let-

ters, and vectors are denoted by boldface lower-case letters.

Given a matrix U = {uij} ∈ �n×m, we denote the i-th
row and j-th column as ui and uj respectively. The �1-

norm of a vector u ∈ �n is defined as ‖u‖1 =
∑n

i=1 |ui|.
The �2-norm of a vector u is defined as ‖u‖2 =

√
u�u.

The Frobenius norm of a matrix U is defined as ‖U‖F =√∑m
i=1

∑n
j=1 u

2
ij .

A. Problem Formulation
Given a collection of omnidirectional images acquired in

different scenarios, each image is equally divided into a set of

views. We also assume that multimodal features are extracted

from each view, where a modality of features is defined as the

features computed using a specific descriptor from images

acquired by a specific visual sensor (e.g., intensity or depth

sensor). Then, the set of multisensory omnidirectional images

can be expressed as X = [x1,x2, . . . ,xn] ∈ �p×n, where

xi ∈ �p denotes the feature vector extracted from all views

of the i -th image, which is a concatenation of features from

m modalities, such that p =
∑m

i=1

∑a
j=1 dij , where dij is the

dimensionality of the i -th modality in the j -th view, and a is

the total number of views. The label vector of scenarios (e.g.,

different seasons) associated with X is represented by Y =
[y1;y2; . . . ;yn] ∈ �n×c, where c is the number of scenarios,

and yi is the scenario indicating vector, with elements yij ∈
{0, 1} representing that the i -th image is collected from the

j -th scenario.
Then, the problem of omnidirectional multisensory place

recognition is formulated as a regularized sparse optimization

problem:

min
W

L(X,Y;W) + λR(W) (1)

where L(·) is a loss function and R(·) is a sparsity-inducing

regularizer with λ ≥ 0 as a trade-off hyperparameter. W
denotes the weight matrix, which represents the importance

of the features X to represent the scenarios Y in general.
We define a new loss function to address multi-directional

place recognition (i.e., identification of the same place from

different directions) as follows:

min
W

‖(RX)TW −Y‖2F (2)

where R is the rotation matrix for aligning omnidirectional

images with the same origin. For example, when two omni-

directional images are take by a car driving on the two sides
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of a road respectively, then one image must be rotated 180◦

to align with the other image, which is performed using R.

Fig. 1. Illustration of the weight matrix W.

The solution to this optimization task is the weight matrix

W = [w1,w2, . . . ,wc] ∈ �p×c, which contains the weights

wi ∈ �p of all modalities and views with respect to the i -th
scenario. Each wi contains weights of m-modalities from all

views, which can be expanded as wi = [w1
i ,w

2
i , . . . ,w

m
i ]T .

In addition, the weight vector of each modality wm
i can

be further divided into a segments, each from a particular

view, as follows wm
i = [wm1

i ;wm2

i ; . . . ;wma

i ] ∈ �dij ,

representing the weights of the features extracted in different

views from m-th modality and i -th scenario. The weight

matrix is graphically represented in Fig. 1.

B. Learning Discriminative Views

An omnidirectional image provides 360◦ field of view, that

allows robots to observe the entire surrounding environment.

We hypothesize that for long-term place recognition, specific

views in the omnidirectional image are more discriminative

than others. In order to automatically identify these views, we

introduce a novel cone-structured sparsity-inducing norm to

learn the discriminative features under our unified regularized

optimization framework.

Formally, each leaf node of the introduced cone structure

contains the features extracted from an individual view, and

each internal node of the cone contains the features from its

respective child nodes, which represents a combination of the

views represented by the child nodes. We represent the set of

nodes as V = (v1,v2, . . . ,vroot), each v containing features

collected from a certain view or multiple adjacent views, and

we denote the weights of the features from respective views

as (wv1
,wv2

, . . . ,wvroot
). For example, the cone structure

with four leaf nodes, each including the features obtained

from a 90◦ view, is demonstrated in Fig. 2, with the 3D cone

structure illustrated in Fig. 2(a) and the unwrapped structure

shown in Fig. 2(b).

Then, we propose a method to compute the weight of
each node w(v) in the cone structure, which is a scalar that

indicates the importance of the node, as follows:

w(v) =

⎧⎪⎨
⎪⎩

h̃v

∑
C(v) ‖wC(v)‖1 + hv

∑
C(v) ‖wC(v)‖2

if v is an internal node∑
v ‖wv‖1 if v is a leaf node

where h̃v = 1−hv, and hv is the normalized height of a node

v with respect to the height of the cone structure. At lower

levels of the cone structure, hv takes smaller values; thus �2-

norm is more significant. Moving toward the upper level of

the cone, hv increases, so �1-norm becomes more dominant.

The variable hv is designed to incorporate the principle that

at lower levels, the grouping effect of different views should

be promoted and at higher levels sparsity among the grouped

views should be emphasized.

Based upon the weights of all nodes, the cone-structured

sparsity-inducing norm is defined as ‖W‖C =
∑

v∈V w(v).
which allows for discovering discriminative views by assign-

ing a greater weight to features from discriminative views.

When using the cone-structure sparsity-inducing norm as a

regularization term, we obtain the new objective function:

min
W

‖(RX)TW −Y‖2F + λ‖W‖C (3)

where λ is a hyperparameter used to balance the loss function

and the regularization term.

(a) 3D cone structure (b) Unwrapped structure

Fig. 2. Illustration of the proposed cone-structured sparsity-inducing norm
for learning discriminative views.

C. Learning Discriminative Modalities

Modern robots are usually equipped with different types

of sensors (e.g., intensity and depth sensors), and we can

extract different type of features from observations obtained

by each sensor. We employ the term modality to refer to a set

of features extracted by a type of feature extraction method

from the data obtained by a specific sensor. In this case, some

feature modalities are typically more descriptive than others.

For example, in a dark environment, observations from depth

sensors are often more useful than data from color cameras.

In this research, we also propose to identify discriminative

features under the unified optimization framework to improve

place recognition accuracy.

Inspired by [20], we incorporate a modality norm, named

M -norm, as a regularization term to enforce sparsity among

different modalities thus identifying discriminative modali-

ties. The M -norm applies the �2-norm within each modality

and the �1-norm across different modalities. The M -norm is

mathematically expressed as ‖W‖M =
∑c

i=1

∑m
j=1 ‖wj

i ‖2.

Incorporating both sparsity-inducing norms to model the

relationship among various views and modalities, we observe

the final objective function:

min
W

‖(RX)TW −Y‖2F + λ1‖W‖C + λ2‖W‖M (4)
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where λ1 and λ2 are the trade-off hyper-parameters to

balance the loss function and the sparsity-inducing norms.

D. Omnidirectional Multisensory Place Recognition

After solving the regularized optimization problem in Eq.

4 (using Algorithm 1, described in the next subsection), we

obtain the optimal weight matrix W∗ ∈ �p×c.

Given a feature vector xi ∈ �p of a query omnidirectional

multisensory observation, we can compute a similarity score

between this query observation and the template as follows:

s =

a∑
i=1

m∑
j=1

wA(i) ∗ wM (j) ∗ sji (5)

where sj
i

denotes the similarity score between the observa-

tion and the template in i-th view of j-th modality, wM (j)
is the optimal weight of the j-th modality, and wA(i) is the

optimal weight of the i-th view. If the similarity score thus

calculated is above a user-defined threshold, the query image

is decided as matching to the template. The weight of the i -th
view is computed as wA(i) =

∑m
j=1 ‖wji‖2, i = 1, 2, . . . , a ,

and the weight of the j -th modality is computed as wM (j) =
‖wj‖2, j = 1, 2, . . . ,m.

Algorithm 1: An iterative algorithm to solve the formu-

lated optimization problem in Eq. (4)

Input : feature matrix X = [x1, · · · ,xn] ∈ �p×n and

ground truth matrix

Y = [y1, · · · , yn]
T ∈ �n×c from the training

set

1 Let t = 1. Initialize W(t) by solving

min
W

‖(RX)TW −Y‖2F .

2 while not converge do
3 Calculate the block diagonal matrix D(t+1), where

the k-th diagonal block of D(t+ 1) is 1
2‖wk(t)‖2

.

Calculate the block diagonal matrix D̃(t+1), where

the diagonal block of D̃(t+ 1) is 1
2‖W(t)‖C

Iid.

4 For each wi(1 ≤ i ≤ c),
wi(t+ 1) = ((RX)(RX)T + γ1D(t+ 1)
+ γ2D̃(t+ 1))−1(RX)yi.

5 t = t+ 1.

Output: W = W(t) ∈ �p×c

E. Optimization Algorithm

The objective function in Eq. (4) comprises of non-smooth

regularization terms, which is challenging to solve in general.

Thus, we implement a new iterative algorithm to solve this

formulated optimization problem.

Taking the derivative of the objective function with respect

to the columns of W (i.e., wi, i = 1, . . . , c) and setting the

whole equation to a zero vector gives us:

(RX)(XTRT )wi − (RX)yi + γ1Dwi + γ2D̃wi = 0 (6)

where D̃ is a diagonal matrix with the ith diagonal element

as
1

2‖wi‖2 , and D is defined as the diagonal matrix with the

diagonal block as
1

2‖W‖C Iid, where Iid is an identity matrix

of size p. Since the matrices D and D̃ are dependent on the

vectors of W, we develop an iterative algorithm to solve

the optimization problem with these unknown variables, as

described in Algorithm 1, which holds a theoretical conver-

gence guarantee as described by the following theorem.

Theorem 1: Algorithm 1 converges to the optimal solu-

tion to the optimization problem in Eq. 4.

Proof: See supplementary materials1.

IV. OMNIDIRECTIONAL MULTISENSORY DATASET

One of the contributions of this research is the collection of

large-scale omnidirectional multisensory datasets. Although

various sensors and omnidirectional cameras are increasingly

widely deployed on robots and autonomous cars, before this

research, no dataset containing omnidirectional multisensory

information is publicly available for benchmarking long-term

place recognition. Motivated by this need, we collected the

new dataset called MOLP, which stands for Multimodal Om-
nidirectional Long-term Place-recognition. The dataset was

collected using a omnidirectional camera installed on a SUV

to collect omnidirectional intensity and depth information.

The MOLP dataset includes two sub-datasets obtained from

two different routes:

• Route-A: Mines-Downtown Golden. This route contains

scenes from the Colorado School of Mines and down-

town of Golden CO. This route is 4.3 miles long and

the dataset consists of 3000-7000 images in each of the

16 instances from different long-term scenarios across a

year. The dataset also captures the short-term dynamics

such as traffics, construction work, and pedestrians.

• Route-B: Historic Suburban Golden. This route contains

scenes of the trip where the gold-rush era started 150

year ago. This driving route is 7.6 miles long, from the

circuitous suburban Golden and to the Rocky Moun-

tains. The dataset consists of 2500-5000 images in each

of the 16 instances from different long-term scenarios

across a year. Beyond long-term appearance changes,

this route has the severe challenge of perceptual aliasing

because of the similar winding roads while driving.

The MOLP dataset is publicly available and more details are

discussed on the dataset website at http://hcr.mines.
edu/code/MOLP.html.

V. EXPERIMENTS

A. Experimental Setup

The Summer and Fall scenarios from the dataset are used

in the experiments. Each omnidirectional image is vertically

split into 18 sections, which corresponds to 18 views, each

including 20◦ field of view. Then, each split image is down-

sampled to a resolution of 210*240, which consists of both

1The proof is available at: hcr.mines.edu/publication/FOMP_
Supp.pdf
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(a) Matched omnidirectional multisensory observations (b) Precision-recall curves

Fig. 3. Results over Route-A across different times of a day (i.e., morning versus evening).

(a) Matched omnidirectional multisensory observations (b) Precision-recall curves

Fig. 4. Results over the Route-B dataset across different times of a day (i.e., morning versus evening).

intensity and depth information. No image processing is

further performed on these images. For ground truth we use

the GPS data recorded at the time of collecting the dataset.

Four different types of visual features are extracted from

each of the intensity and depth images in our experiments,

including GIST [4], HOG [5], LBP [6], and CNN-based deep

features [17], [16]. All features are separately extracted from

both intensity and depth images. Moreover, we implement

several techniques from the literature to compare with our

FOMP approach, including representations by concatenated

features and discriminative features. Furthermore, we imple-

ment a method using the traditional front 80◦ field of view

as a baseline. For all experiments, we set 0.1 to the hyper-

parameter λ1, and 0.05 to λ2.

B. Results at Different Times of a Day

To evaluate our approach on place recognition with long-

term appearance changes across different times of a day and

with environment dynamics, we perform experiments using

morning and evening scenarios for both Route-A and Route-

B in the MOLP dataset.

The qualitative result on the Route-A dataset is illustrated

in Fig. 3(a), which includes a detected match of omnidirec-

tional intensity-depth images in the query and template. It

can be observed from the intensity image that the same place

exhibits very different illumination conditions in the morning

versus evening, and also contains different dynamics because

of varying traffic and pedestrians. In this challenging sce-

nario, the match shows our FOMP approach can well perform

place recognition with long-term appearance variations. In

the experiments over the Route-B dataset, we observe similar

qualitative results, with an exemplary match depicted in Fig.

4(a), which shows our FOMP approach is able to match the

places with the presence of long-term illumination changes.

(a) Descriptive views (b) Descriptive modalities

Fig. 5. Experimental results on view and modality importance using the
Route-A dataset across various times of a day.

To provide a quantitative evaluation, the standard metric of

precision-recall curves is used. Fig. 3(b) shows the precision-

recall curves obtained over the morning and evening scenes

of Route-A. The results for Route-B is illustrated in Fig. 4(b).

Comparisons with baseline techniques are also presented in

the respective figures. We observe that integrating omnidirec-
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(a) Matched omnidirectional multisensory observations (b) Precision-recall curves

Fig. 6. Results over the Route-B dataset across different seasons (i.e., Summer versus Fall).

tional information can improve the performance (as shown

in Fig. 3(b)). In addition, our FOMP method outperforms the

baseline techniques, due to the ability to identify and fuse

discriminative views and feature modalities.

In addition, we perform experiments to evaluate the im-

portance of different viewing angles, with the results shown

in Fig. 5(a) for Route-A. The relative importance of each

view is presented as a heat chart, with a warmer color

denoting greater importance, and the vehicle is facing up

as the front. It can be observed that the front and back views

in the omnidirectional observation are the most descriptive

for long-term place recognition across different times of the

day, and the sideways of the observation are less descriptive.

Finally, we perform experiments to assess the importance of

different sensing modalities, i.e., different types of features

acquired from various sensors. The results are shown in Fig.

5(b) for Route-A, with the numbers denoting the importance

of the modality. We observe consistent results on modality

importance: the four most important modalities are depth-

LBP, depth-GIST, intensity-GIST, and depth-CNN.

C. Results across Different Seasons

To evaluate FOMP over a longer span of time, we perform

experiments using omnidirectional multisensory observations

across different seasons, in which the places show significant

appearance changes caused by weather and vegetation.

As the qualitative experimental result, examples of the de-

tected omnidirectional multisensory matches between query

and template observations are illustrated in Fig. 6(a) for

Route-B. The results show FOMP is able to well perform

place recognition under different vegetation and illumina-

tion conditions across different seasons. The precision-recall

curves are illustrated in Fig. 6(b). We can observe that the

proposed approach outperforms the baseline techniques on

long-term place recognition across different seasons.

The importance of viewing angles for Route-B across

different seasons is illustrated in Fig. 7(a). Results in Route-B

are a bit different from previous observations: the front view

is relatively more discriminative than the back view, although

both front and back views are still more important than

side views for omnidirectional long-term place recognition.

Finally, the quantitative results over modality weights are

illustrated in 7(b) for Route-B across different seasons, re-

spectively. Similar to the results obtained from different times

of a day, the modality importance is also consistent with the

same top four most descriptive modalities. When we sum

up the weights of features acquired by either the intensity

or depth sensor, we observe depth data weights more over

intensity data, which indicates that depth observations are

more important. A possible explanation is that the intensity

cues are more sensitive to the long-term appearance variation

such as various illumination and weather, while the depth

information determined by the environment topology is less

affected by appearance changes.

(a) Descriptive Views (b) Descriptive Modalities

Fig. 7. Experimental results on view and modality importance using the
Route-B dataset across different seasons.

D. Results on Multi-directional Place Recognition

One unique capability of the FOMP approach is to achieve

multi-directional place recognition, which is enabled by

introducing the rotation matrix in our problem formulation

to address different robot’s orientations. This new advantage

is validated and evaluated in this set of experiments. We train

our approach using the data from one direction only (either

forward or backward), then we evaluate its performance on

long-term place recognition using data from both directions.

An exemplary location match detected by FOMP is illus-

trated in Fig. 8(a). Because the vehicle drives through the

same place from different directions, it is observed that the

query observation is rotated around 180◦ comparing to the

template, which is clearly demonstrated by the arched sign

(which reads “WELCOME TO GOLDEN”). Since the rotation

matrix R in our formulation is able to model this rotation,
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(a) Detected matches when the car drives from opposite directions (b) Precision-recall curves

Fig. 8. Results of bidirectional place recognition when a car drives through the same place from different directions in different seasons. In the legend
of precision-recall curves, “For” indicates the FOMP approach is trained using forward-direction data only, and “Back” indicates the approach is trained
using backward-direction data only. Testing is performed using data collected from both directions.

FOMP can successfully recognize the same place when the

car approaches it from different directions.

Precision-recall curves obtained from bidirectional place

recognition are illustrated in Fig. 8(b). We can observe three

key phenomena. First, for bidirectional place recognition, the

methods using traditional camera do not work, as expected.

Second, our FOMP approach significantly outperforms other

baseline techniques, mainly due to its capability of modeling

rotations. Third, because of the same reason, FOMP methods

trained on forward-direction data or backward-direction data

obtain consistent good performance. This consistent capabil-

ity highlights our approach for bidirectional place recognition

in long-term autonomy.

VI. CONCLUSION

In this paper, we propose a new problem of place recogni-

tion from omnidirectional multisensory observations in long-

term autonomy. To address this challenge, we introduce the

novel FOMP approach that is able to identify and integrate

discriminative multimodal data obtained from heterogeneous

sensors in different views. Our approach shows that differ-

ent viewing angles in the omnidirectional observation have

different description powers. Our research also demonstrates

that multi-directional long-term place recognition is achiev-

able. To validate our FOMP approach and hypothesis, we

collect a large-scale dataset containing omnidirectional mul-

tisensory observations. Experimental results on this dataset

have demonstrated that FOMP obtains promising long-term

place recognition performance.
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