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In this supplementary material document, Section 1 presents the proof of convergence for the proposed
optimization algorithm presented in the main paper. Section 2 presents the implementation details of
our approach and the software used. Section 3 provides a discussion on the discriminative features
as estimated by our approach. Finally, in Section 4, we provide a summary of our approach’s novel
contributions, advancements over the state-of-the-art, assumptions and limitations.

1 Proof of Convergence for the Proposed Optimization Algorithm

In this section, we prove that Algorithm 1 (in the main paper) decreases the value of the objective
function in Eq. (5) (in the main paper) in each iteration, and the algorithm converges to the global
optimal solution.

First, we present a lemma:
Lemma 1. Given any two vectors a and b, the following inequality holds:
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From Lemma 1, we can derive the following corollary:
Corollary 1. Given any two matrices A and B, the following inequality holds:
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Theorem 1. Algorithm I (in the main paper) converges to the global optimal solution to the formu-
lated regularized optimization problem in Eq. (5) (in the main paper).

Proof. According to Step 4 of Algorithm 1, in the s-th iteration, the value of W) (s 4- 1) can be
calculated as:

WHE (54 1) = [[W(s) @3 X +U(s) @3 E — Al|Z + MTr(WHF () TQH (s + HWHF) (5) (1)

where the operator T denotes the trace of a matrix and Q¥ (s + 1) = mldi.

5th Conference on Robot Learning (CoRL 2021), London, UK.



From Step 6 of Algorithm 1, we obtain:
Ul(s+1) = [W(s+ 1) ®3 X +U(s) @3 E — A||% + XTr(UF () TP(s + 1) UR(s)  (2)
Where P(t + 1) = mly

Then, we can derive that:
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After substituting Q(’“), we obtain:
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From Lemma 1 and Corollary 1, Vk = 1,..., ¢, we obtain:
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Adding Egs. (4) and (5) on both sides, we obtain:
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Eq. (6) shows that, given a fixed U when updating WV, the updated VY decreases the value of the
objective function in each iteration.

Using the updated W, we can derive that:
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Similar to Eq. (5), from Lemma 1 and Corollary 1, Vk =t¢,...,t — ¢, we obtain:
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Adding Egs. (8) and Eq. (9) on both sides, we obtain:

Fls+1)+ 30U (s + 1)) < Flo +Z (ellUM (s)lr) 10
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Eq. (10) shows that, given fixed YW when updating U, the updated U decreases the value of the
objective function in each iteration.



Each iteration of Algorithm 1 includes both Eq. (6) and Eq. (10). By adding these equations on both
sides, we obtain:

T+ 1)+ F(s+ 1)+ [W(s+ Dlla + [[U(s + D[z
< J(s) + F(s) + [W(s)llm + [1U(s)|| (11)

At the end of each iteration of Algorithm 1, the loss function F is always less than or equal to 7, as
J reduces the loss value by optimizing over W, and F reduces the loss value by optimizing over
both W and U. Then we can write:

Fls+1)+ WG+ Dl + [U(s + Dllr < T(s+ 1) + [W(s +1)lla + [U(s + 1)[l7 (12)

Similarly, as the loss function 7 (s + 1) is always less than or equal to F(s) as J (s + 1) reduces the
value of loss further by optimizing W(s), we can write:

J(s+ 1)+ [W(s+ D)lar + [U(s)[l2 < F(s) + [W(s)llar + [[Lh(s) (13)
From Eq. (11), (12) and (13), we can write the following inequality:
Fls+1)+[W(s+ Dl + [U(s+Dllr < T(s+1) + [W(s + 1)+ [[U(s + D7
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From Eq. (14) we have:
Fls+ 1)+ [W(s + Dllar + [U(s + Dz < F(s) + [[W(s)llar + [[L(s) (15)

Eq. (15) shows that the value of the objective function is decreased in each iteration. Because the
objective function is convex, Algorithm 1 (in the main paper) converges to the global optimal solution
to the formulated regularized optimization problem in Eq. (5) (in the main paper). O

2 Implementation of the Algorithm and Robot Software System

2.1 Algorithm Implementation and Training/Execution Procedures

The optimization algorithm is executed during the offline training phase, and no online optimization
is used at the test/execution phase. We provide the terrain feature tensor X, the expected behaviors
Y, the actual behaviors A, and the behavior difference tensor £ as input variables to our optimization
algorithm. For each expected behavior Y, the robot estimates its actual behavior A, so the dimen-
sionality of A and Y is the same. Our algorithm then alternatively optimizes weight tensors VY and
U, over various iterations and converges to the global optimal solution.

We train our approach on a dataset recorded while an expert (a human in our case) demonstrates
robot driving over individual types of terrains, including grass, sand, gravel, medium-sized rocks, and
large-sized rocks. The recorded data includes the robot’s observations from IMU, RGBD camera,
and LiDAR sensors, the robot’s actual behavior, and the expected behavior demonstrated by the
expert. The training dataset includes approximately 20,000 instances from nearly 5.5 hours of driving.
Each instance includes the inputs from c time steps as defined in the main paper. This dataset is
used to train our algorithm and identify the optimal hyperparameter values (Figs. 5 and 6 in the
main paper) in the training phase. The optimal hyper-parameter we obtain for our training data are:
A1 = 0.1, Ay = 0.1 and ¢ = 15. In the testing phase, our approach uses the parameters learned
during the training phase without additional online learning/optimization. Although our approach
is trained using data obtained from individual types of terrains, we include unseen off-road terrains
(e.g., grass-medium rocks, and mixed terrains) during testing to evaluate our approach’s ability to let
ground robots generate consistent behaviors in unfamiliar terrains.

The computational cost increases quadratically with ¢ in each iteration of our algorithm. The number
of iterations to convergence may also increase with the increase of ¢ (which unfortunately does not
have a mathematical bound). In practice, when the algorithm is trained using the dataset on the
robot’s onboard computer that has a 4.3 GHz Intel i7 processor and 16GB memory with no GPU, it
takes nearly 3.5 hours for the algorithm to converge when ¢ = 15, and nearly 21 hours when ¢ = 40.
We did not test the cases when ¢ > 40 because the performance has already significantly dropped
when ¢ > 30 (Fig. 6 of the main paper). The computational cost is linearly dependent on n.
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Figure 1: Overview of the ROS-based software architecture implemented on our physical robots for
performing consistent behavior generation. The yellow box shows our approach and the remaining
modules that work with the proposed approach in our software architecture are shown by gray boxes.

Similar to most ML methods, more training data from more diverse scenarios (e.g., diverse terrains
for ground navigation in our case) often improves the results. However, training with more data also
increases computational cost. It is not easy to determine the impacts of data quality on the results
unfortunately. First, it is difficult to estimate data quality as it is affected by many factors such as
sensor types and quality (e.g., resolution and noise), feature extraction, and human/Al-agent demos.
Second, the learning model is optimized based on the current quality of data. When data quality
changes (e.g., by switching to better feature extractions), the model may not be applicable anymore.

2.2 Robot Software System Implementation

We use a Clearpath Husky robot in our field experiments. The robot runs on Ubuntu 18.04 and Robot
Operating System (ROS) Melodic as the operating system. Our approach is implemented using C++
as a ROS package, which runs in real time at 30 Hz on an Intel 4.3 GHz i7 processor onboard the
robot without requring a GPU. The implementation code is provided as a part of the supplementary
material. Instructions of executing our ROS package is also included in the submitted implementation
code.

Fig. 1 provides an overview of the ROS-based software architecture implemented on our physical
robots to perform consistent navigational behavior generation. Implemented as a ROS package, our
approach works with many other packages within ROS. Our approach works as a local controller to
generate navigational controls, and it works together with the packages of global and local planners.
The global planner generates a global path using a cost map and offers the local planner intermediate
way-points that lead the robot to the goal position. The local planner employs point cloud data from
the perception package to detect obstacles near the robot. Then, it generates a local path for the robot
to avoid the obstacles between the way-points. The local path calculated from the local planner is
then passed onto our approach, which generates consistent navigational behaviors to make the robot
to follow the path. Specifically, our approach computes expected navigational behaviors from terrain
feature vectors extracted by the feature extraction package. Our approach continuously monitors the
difference between the robot’s expected behaviors and actual behaviors that are estimated using visual
odometry or SLAM. Then, then our approach calculates offset behaviors based on a sequence of past
behavior differences. These offset behaviors are applied to compensate for the behavior differences
in order to achieve consistent ground navigation when the robot traverse over unstructured off-road
terrains.

3 Results on Discriminative Feature Modalities

Our approach has the ability to automatically estimate the importance of various feature modalities
during the training phase. The visualization of the multimodal features used in our experiments is
provided in Fig. 2. The importance of feature modalities is estimated from the optimal weight tensor
W, which is learned on the training data from all individual types of unstructured terrains. As no
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Figure 2: Multimodal features used to characterized terrain during ground navigation.

additional training is performed for the complex off-road unstructured terrains, the importance of
feature modalities remains the same for both experimental scenarios.

The results on the importance of feature modal-
ities are demonstrated in Fig. 3. It is observed
that the HOG features are the most important
and have a relative importance of 48.3%. The
IMU features are observed to be the second most
important feature modality with a relative im-  o5.453%
portance of 26.7%. The grid-wise elevation fea-
tures extracted from a robot’s LiDAR sensor are
relatively less important and have a relative im-
portance of 13.6%. The least important feature
modality is LBP and has a relative importance
of 11.3%.

The HOG features have relatively high impor-

tance because they capture the terrain shape in- Figure 3: Relative importance of the feature modal-
formation, which better characterize the terrain ities estimated by our approach to enable consistent
compared to terrain textures encoded by the LBP ~ off-road ground navigation.

features. During training, the robot is controlled

by a human demonstrator in a manner that reduces the jerkiness of robot navigation. This jerkiness
metric is more correlated with the IMU data. Thus, we observe that the IMU features are also of high
importance. The results in Fig. 3 also show that elevation maps are less important. This is probably
caused by the fact that the used grid size (25 cm x 25 cm) cannot capture the essential characteristics
of off-road terrains.

ELEVATION : 13.6%

| IMU : 26.7%

LBP:11.3%

4 Summary of Our Approach’s Novelties, Advancements, and Limitations

We further detail our approach’s novelty, advancement on the state-of-the-art, and assumptions and
limitations as follows.

4.1 Novel Contributions

The main novelty of our approach is the introduction of a mathematical formulation that formulates the
real-world problem of consistent ground navigation over diverse off-road terrains into a mathematical
problem. This formulation realizes our new idea of generating consistent navigation through learning
offset behaviors that adapt a robot’s navigation to various unstructured terrains. Our approach achieves
this capability by continuously monitoring the difference between the robot’s actual and expected
behaviors. Furthermore, our formulation enables consistent navigation without explicitly modeling
the setbacks that cause the behavior difference. Our formulation also fuses multi-modal features to
enable terrain-aware ground navigation and automatically estimates the importance of terrain features,
as seen in Fig. 3. This ability is implemented through a structured norm over parameter tensors as a
regularization term under the unified mathematical formulation.

The second novelty of our paper is the implementation of a new optimization algorithm to solve
the formulated regularized optimization problem, which holds a theoretical guarantee to effectively
converge to the global optimal solution. The formulated optimization problem introduced in Eq.
(5) (of the main paper) is challenging to solve because the regularization terms are not smooth and



because the objective function includes dependent variables. Since the regularization terms cannot be
differentiated at non-smooth points during optimization, second-order optimization algorithms (such
as Newton’s or Secant’s method [1, 2]) are not applicable. To address the non-smooth regularization
terms and dependent variables, we design a new alternating minimization algorithm. Our algorithm
can be viewed as a specialized version of gradient descent. Given our specific objective function, the
solution must be mathematically derived. Although gradient descent is a fundamental mathematical
tool, deriving a closed-form solution with the convergence guarantee is not always possible. Our
algorithm is tailored and mathematically derived to solve our formulated optimization problem and
provides a closed-form solution that is guaranteed to converge to the global optima monotonically
and fast, as can be seen from Fig. 7 (of the main paper).

As a practical contribution, we provide a comprehensive evaluation of learning-based terrain adapta-
tion methods by designing a set of live-robot navigation scenarios using physical ground robots over
various unstructured off-road terrains.

4.2 Advancements of Our Approach

Our approach advances the state-of-the-art in both the problem domain and the solution domain. In the
problem domain, we address the problem of robots’ consistent ground navigational over unstructured
off-road terrain. This problem has not been well studied in the field of off-road navigation and
causes slower robot traversal or uncertain traversal times, further resulting in the robot failing to
execute navigational tasks on time. Moreover, inconsistent navigational behaviors also result in robot
localization errors and need to be addressed for successful robot off-road ground navigation.

In the solution domain, previous learning-based methods for off-road robot navigation generally
ignore behavior inconsistency caused due to setbacks. Our approach advances the state-of-the-art by
introducing a novel approach with a mathematical formulation and an optimization algorithm that
enables consistent ground navigation with solid mathematical support and experimental evaluation.

4.3 Assumptions and Limitations

Our approach is based on two main assumptions: First, we assume the LiDAR-based SLAM method
used in our autonomy stack as seen in Fig. 1, provides an accurate estimation of the robot’s actual
behaviors. However, this assumption may not be satisfied when robots operate in feature-sparse
environments such as a hallway with white walls. With inaccurate SLAM, the generated offset
behaviors can be sub-optimal. On the other hand, our focus is the unstructured off-road environment
(e.g., in a forest), which is often feature rich. So our assumption is satisfied. If not, we may use
SLAM methods designed for feature-sparse scenarios [3, 4] or use a Visual Inertial Navigation
System (VINS) [5] in environments with visual texture. The second assumption we make is that
the dynamics of the robot do not dramatically change over a shorter period of time (e.g., within one
second), and the non-linearity in the robot is not severe. This assumption holds as our approach only
works as a local controller and moreover, can be easily satisfied when we use robot observations from
the past 0.5 seconds, i.e., a sequence length of ¢ = 15 frames.

In addition, our approach also makes common assumptions such as the expert demonstrations
are reasonably good and robot functions correctly without failures in actuation. Different sensor
periodicities are often addressed at the robot’s hardware level, e.g., using a MasterClock in our
case (which is a precise timing system to synchronize all sensor measurements). In addition, our
approach does not explicitly assume that all sensor measurements are always available, but it also
does not explicitly address the problem of missing data (e.g., caused by sensor failure or occlusion).
Implicitly, our approach is robust to missing data because it fuses measurements from multiple
sensors to generate navigational behaviors. That is, if one sensor fails we still have information from
the other sensors to generate behaviors. Each sensor contributes differently to navigational behavior
generation. For example from Fig. 3, we observe that features obtained from the color camera (HOG
and LBP) have a relative importance of ~ 60%, and features from IMU measurements have a relative
importance of ~ 27%. Thus, missing measurements from the color camera is more severe than
missing IMU data.

Our approach has two limitations: First, our approach is a local controller that works with an external
local planner, as seen in Fig. 1. This local planner does not have terrain awareness, which caused
most failures in our experiments, including the failure case in the video. The second limitation of



our approach is from the assumption that the LiDAR-based SLAM method in the robot’s autonomy
can provide good estimations of the robot’s actual behavior. However, as mentioned earlier, this
assumption doesn’t hold in feature-sparse environments and would lead our approach to generate
sub-optimal offset behaviors.
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