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Abstract

While a robot navigates on complex unstructured off-road ter-
rains, the robot’s expected behaviors cannot always be exe-
cuted accurately due to setbacks such as wheel slip and re-
duced tire pressure. In this paper, we propose an approach
for enhancing robot’s maneuverability by consistent behav-
ior generation that enables a ground robot’s actual behaviors
to more accurately match expected behaviors while adapting
to off-road terrain. Our approach learns offset behaviors that
are used to compensate for the inconsistency between the ac-
tual and expected behaviors without explicitly modeling var-
ious setbacks. Experimental results in complex unstructured
off-road terrains demonstrate the superior performance of our
proposed approach to achieve consistent behaviors.

Introduction
Off-road field environments, as seen in Fig. 1, are challeng-
ing for autonomous ground robots to navigate as the terrain
exhibits a wide variety of charecteristics and cannot be mod-
eled beforehand. The capability of adapting navigational be-
haviors to these complex unstructured off-road terrains is es-
sential for robots to successfully complete navigation tasks.

Robot terrain adaptation is then an essential capability for
robots to adapt their navigational behaviors according to off-
road terrains. Although, the research problem of robot ter-
rain adaptation has been widely investigated over the past
several years, the challenge of how to generate consistent
navigational behaviors for robot terrain adaptation has not
been well addressed.

In this paper, we present our research on enhancing
robot’s maneuverability through consistent behavior gener-
ation that enables a robot’s actual navigational behaviors to
match the expected behaviors while adapting to a variety
of unstructured off-road terrains. Our approach learns robot
offset behaviors to compensate for the inconsistency be-
tween the actual and expected navigational behaviors with-
out explicitly modeling the setbacks, while also adaptively
navigating over various terrain. In addition, our approach is
able to integrate multi-modal features to characterize terrain
and automatically estimate the importance of these features.

Experiments are conducted for robot navigation scenarios
over complex off-road terrains to validate our approach.
Copyright © 2021, Association for the Advancement of Artificial
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Figure 1: Motivating scenarios for robot terrain adaptation.
When ground robots are deployed in this environment, their
actual behaviors often do not match the expected behaviors,
e.g., due to wheel slip. Thus, requiring the capability of gen-
erating consistent navigational behaviors.

Approach
We extract multi-modal features from multiple sensors in-
stalled on the robot (e.g., visual camera, LiDAR, and IMU)
while traversing over a terrain. We concatenate all features
extracted at time point t into a vector and denote it as x(t) ∈
Rq , where q =

∑m
j=1 qj , qj is the dimensionality of the j-

th feature modality, and m is the number of modalities. We
represent features extracted from a sequence of consecutive
c time points as a data instance x = [x(t); . . . ;x(t−c)] ∈ Rd,
where d = c×q. We further denote the set of n data instances
for training our approach as X = [x1, . . . ,xn] ∈ Rd×n.
We use Y = [y1, . . . ,yn] ∈ Rr×n to denote the ex-
pected navigational behaviors (e.g., velocity, motor torque,
and steering angle) of the robot associated with X, where
yi ∈ Rr is a vector of r behavior control variables cor-
responding to xi. We estimate the robot’s behaviors yi us-
ing xi = [x

(t)
i ; . . . ;x

(t−c)
i ], taking into account the history

of c observations. Then, we formulate the problem of nav-
igational behavior estimation as: min(W)‖Y −W>X‖2F .
Here W ∈ Rd×r is a weight matrix indicating the impor-
tance of feature modalities towards generating navigational
behaviors and ‖.‖F is the Frobenius norm.

To generate consistent navigational behaviors, our ap-
proach monitors the difference between the actual and the
expected navigational behaviors caused by the setbacks, and



Table 1: Quantitative results for scenarios when robot traverses over unstructured off-road terrain shown in Fig. 2.

Failure Rate (/10) Traversal Time (s) Inconsistency Jerkiness (m/s3)
Terrain MM-LfD TRAL Ours MM-LfD TRAL Ours MM-LfD TRAL Ours MM-LfD TRAL Ours

Gr-M.Rock 7 2 1 19.7 27.5 23.1 17.28 14.54 12.31 80.56 58.36 51.93
Gr-L.Rock 9 3 3 27.4 29.4 28.8 101.26 68.87 51.16 40.51 28.22 24.55
M.Terrain I 1 0 0 18.2 19.4 18.9 5.38 4.91 3.39 83.17 70.36 68.55
M.Terrain II 7 4 5 18.1 30.2 28.5 95.47 80.43 78.82 77.49 52.51 47.93

computes an offset to reduce this difference without explic-
itly modeling all the setbacks. Formally, we denote the ac-
tual behaviors executed by the robot as Ŷ = [ŷ1, . . . , ŷn] ∈
Rr×n, where ŷi ∈ Rr denotes the actual behaviors exe-
cuted by the robot when observing xi. We define that the
actual behaviors ŷi is composed by the expected behaviors
yi and the offset behaviors vi ∈ Rr, i.e., ŷi = yi + vi.
The offset behaviors vi is computed as vi = U>ei, where
ei = [(ŷ

(t)
i − y

(t)
i ); . . . ; (ŷ

(t−c)
i − y

(t−c)
i )] ∈ Rrc denotes a

vector of differences between actual and expected behaviors
in the previous c time steps. U = [u1, . . . ,ur] ∈ Rrc×r is
the weight matrix, and uj ∈ Rrc indicates the importance
of ei towards generating the j-th element in vi. Then, gen-
erating consistent navigational behaviors can be formulated
as:

min
U,W

‖Ŷ−W>X−U>E‖2F +λ1‖W‖M +λ2‖U‖T (1)

where E = [e1, . . . , en] ∈ Rrc×n. The first term of Eq.
(1) is a loss function to model the actual behavior by con-
sidering both X and E to achieve consistent navigational
behaviors. The second term is a regularization term termed
as the feature modality norm, that groups together weights
within a feature modality and enforces sparsity among dif-
ferent modalities, thus, identifying the most descriptive fea-
tures for behavior generation. Finally the last term is a reg-
ularization term called the temporal norm, designed to ex-
plore which time steps in the historical data are more impor-
tant for generating the offset behaviors.

After computing the optimal values of the weight matrices
W and U from training data, we can compute the offset be-
havior as v = U>e, where e denotes the difference between
the expected y and the actual behavior ŷ. We also predict
the offset needed for the next time step to proactively gen-
erate behaviors by considering future behavior differences
as ṽ =

∑t−c
k=t

((
U(k)>)−1(y(k)−W(k)>x(k)

))
. Then our

approach allows the robot to generate consistent actual nav-
igational behaviors as:

y = W>x+ [Ir U] [ṽ e]
> (2)

where Ir ∈ Rr×r is an identity matrix.

Experimental Results
We evaluate our approach using a Clearpath Husky robot
over complex off-road unstructured terrains. The tracks in
these experiments either show transitions between different
terrain types (i.e., grass to large rocks and grass to medium
rocks) or a mixture of terrain types in real off-road environ-
ments (i.e., Mixed Terrain I and Mixed Terrain II), as shown
in Fig. 2.

Figure 2: Complex unstructured off-road terrain.

The robot is equipped with an Intel Reasense D435 color-
depth camera, an Ouster OS1-64 LiDAR and an array of
internal sensors to measure the robot’s states (e.g., wheel
odometry, inertial readings, motor speed, etc.). Multi-modal
features are extracted from sensor data and concatenated to
form feature vectors. Training data is provided by human
operators who control the robot to traverse terrains as fast as
possible while maintaining safety (e.g., no flipping or crash-
ing).

Table 1 presents the quantitative results obtained by our
approach and the comparison with multi-modal LfD (MM-
LfD) (Wu et al. 2018), and Terrain Representation and Ap-
prenticeship Learning (Siva et al. 2019) (TRAL) methods. 1)
Failure Rate (FR) during navigation, 2)Traversal time (TT)
of the robot over a terrain, 3) Inconsistency calculated as
the error between the expected and actual navigational be-
haviors and 4) Jerkiness calculated as the average sum of
acceleration derivative are the four evaluation metrics used
to compare the approaches. It is observed that all the meth-
ods have a much higher failure rate in the Mixed Terrain II
and the terrain of grass to large rocks. Our approach gener-
ally performs equally well or significantly better than MM-
LfD and TRAL in terms of failure rate. We also observe
that both MM-LfD has much small traversal time for suc-
cessful runs, but has a significantly higher failure rate com-
pared with TRAL and our approach. Our approach clearly
outperforms other methods and obtains state-of-the-art per-
formance in terms of consistency and jerkiness.
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